
Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

Developing Context-aware Mobile Applications Using
Composition Process based-on heterogeneous software entities

Afrah Djeddar1,a, Hakim Bendjenna 1,b, Abdelkrim Amirat 2,c, Ali A. Alwan3,d

1LAMIS Laboratory, University of Tebessa, Algeria
2LIM Laboratory, University of Souk Ahras, Algeria

3Department of Computer Science, Kulliyyah of Information and Communication Technology,
International Islamic University Malaysia, Kuala Lumpur, Malaysia

aafrah-djeddar@hotmail.fr, bhbendjenna@yahoo.fr, cabdelkrim.amirat@yahoo.com,
daliamer@iium.edu.my

ISSN: 2231-8852

ABSTRACT
Despite the tremendous number of mobile applications (apps) that developed using various implementation forms

such as component, service, or app, user’s needs are unlike each other. Besides, mobile devices are characterized

by heterogeneous software and hardware configurations. Developing customized mobile applications needs to

explore and incorporate new entities in the surrounding user context. Besides, involving the existing

heterogeneous entities might benefit in developing context-aware mobile apps. Thus, a significant challenge in the

development process of mobile apps is the deployment of these applications in the heterogeneous devices

available on the market. To tackle these challenges, there is a need for a composition process to reuse and utilize

the existing heterogeneous entities to develop mobile apps according to user’s requirements. Hence, the behavior

of the desired apps can be customized according to the user context information. This paper addresses the issue of

discovering, integrating and reusing the existing heterogeneous software entities in developing a customized

mobile application. In this paper we propose framework for context-aware mobile apps composition process

based-on existing heterogeneous software entities.

Keywords: Mobile apps, Composition process, Heterogeneous software entities, Context-aware, Composition

cost

1. Introduction

In the recent couple of years, the interest in developing and using mobile apps is increased

exponentially. Developing applications for mobile devices adds new challenges to software engineering

process (Sheshagiri, Sadeh & Gandon, 2004; Chakraborty et al, 2005; Rosa & Lucena, 2011; Jeffrey,

Michael & Julie, 2015). Mobile platforms features are changing continuously and rapidly. This

including diverse capabilities such as GPS, sensors, and input modes. With these new added features,

mobile app needs to be adapted and customized its behavior according to the context information

surrounding the user. Moreover, these developed mobile applications should work in a seamless way on

all mobile platforms. However, despite the huge number of available mobile apps, user’s needs and

daily-life activities are unlike from each another.

mailto:hbendjenna@yahoo.fr

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

94

These issues give some need to utilize a composition mechanism when building mobile apps in order

to achieve the desired functionalities while considering different context information (i.e. software and

hardware characteristics of mobile device) (Sheshagiri, Sadeh & Gandon, 2004). One of the key benefits

of using composition process is reuse the existing entities. Hence, composition process ensures fulfilling

the reusability concept of software engineering process when designing mobile applications (Hock-

Koon & Oussalah 2010a; Hock-Koon & Oussalah, 2010b; Furno & Zimeo, 2012). Exploiting

information context is beneficial and might contribute in enabling solution for handling adaptation to

customize the solution in a way that best fit user demands (Furno & Zimeo, 2012; Furno & Zimeo,

2014).

To the best of our knowledge, there is no such composition process has been applied on developing

mobile apps which designed to consider the heterogeneity of software entities constituents and the

composition cost in terms of adaptability. Thus taking advantage from existing works, we propose a

composition process for composing context-aware heterogeneous mobile apps while considering the

cost of composition. Our propose approach able to compose mobile apps using existing heterogeneous

software entities by providing heterogeneous composition process in order to satisfy user’s needs. Most

importantly, consider the context information of the mobile device during the composition in order to

develop mobile apps that can sense and adapt to the user context. The work presented in this paper

attempt to provide a first step towards a composition process of context-aware apps based-on

heterogeneous entities by a metamodeling approach in mobile environment.

The rest of the paper is structured as follows: Section 2 reviews the related works, while Section 3

introduces the motivating scenario and the overview of our proposed framework for composition

process with the details description of the steps. Finally, Section 4 gives the conclusion remarks

followed by the perspective future work.

2. Related Works

In this section we discuss and examine the existing approaches that focused on composition process

for building and developing mobile applications. The work introduced by (Chakraborty et al, 2005)

discusses the issue concern on services composition in mobile environment. The focus is given on how to

evaluate the criteria that need to be used in order to enable the composition. They have developed

distributed service composition architecture for service composition in mobile context. The proposed

architecture incorporates a set of composition protocols named Service Composition Protocols that

utilized to determine the composition process. The composition protocols take into consideration several

factors that facilitate the composition process. These factors include, user mobility, dynamic changes of

service topology and device resources. However, their work has not concentrate on the application layer

and the adaptation capabilities.

The issue of process heterogeneity and data heterogeneity for web service composition has been

highlighted by (Wu et al. 2007). Wu et al, (2007) has proposed an automatic planner and data mediator to

resolves the issue of process and data heterogeneity for web service applications. They argued that their

approach reduces the human effort and only the specification of the task such as initial state and the goal

state of the task need to be changed. The proposed planner approach employed GraphPlan (Russell &

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

95

Norvig, 2006) planning algorithm to reduce the searching space and automatically generate the control

flow of a Web process. The data mediator involves a context-based ranking algorithm to handle different

structure and semantics of the web services and select the best element from the source messages if more

than one element has acceptable semantics for the target element.

Li, Zhou & Qiu, (2008) proposed an automated Semantic-based approach to compose a semantic web

services using data mediator and complete backward tree. The designed model involves some

anthologies concept and exploits graph-based and semantic-based approaches to efficiently identify the

web service request and the semantic of the service. Besides, the proposed approach also concentrates

on reducing the searching space to process the service request with either single or multiple goals and

attempt to resolve the issue of data heterogeneities to ensure interoperation between semantic Web

services.

Hock-Koon & Oussalah, (2010b) develop a service composition metamodel that relies on reusing the

existing entities and merging the available relevant resources which are defined as services. The

proposed composite approach involves a homogenous reuse of the available compositions to provide the

service composition. Moreover, the composite approach allows the specification of the auto-composition

process and dynamically modifies its architecture and its composition logics according to the

environmental context. Lastly, they argued that the proposed metamodel able to handle all the impacts on

the architectural elements and on the composition logics.

Furthermore, the work in (Rosa & Lucena, 2011), has also concentrates on the issue of the

heterogeneity aspects of mobile platform including display size, development libraries, sensors and

keypad layout when developing mobile applications. They have presented AppSpotter as software

architecture that makes the selection and the composition process of software components to be dynamic

and automated when building mobile applications. AppSpotter selects the software components and the

composition of them when developing mobile application by taking into consideration the mobile device

features. Thus, this will leads into building customized mobile application that best meet user

requirements.

Furno & Zimeo, (2014) introduced an automatic composition approach to design context-aware

services. The proposed approach employed a semantic model to represent the context information that

result into extending the services. Exploiting context information is beneficial and generates context-

aware compositions and let the services provided in the model to be explored and composed dynamically.

This will tailor a service search space to user needs, preferences and the current situation of the

environment where the services have to be executed. Several analyses have been conducted to validate

the proposed model and elaborate the improvement in the precision of the automatic compositions.

Elfirdoussi, Jarir & Quafafou, (2014) has discussed the issue of composition process of web services.

They proposed an approach to automatically perform the composition process based on the concept of

web service popularity. The idea is to develop a web search composition engine that automatically

selects the best web services for the selected query based on its popularity. Then, the composition is

derived as a result according the BPEL process model. To facilitate the process of extracting data from

user, an interface has been developed to define the sequence of the activities with query input.

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

96

Han, Lee & Crespi, (2014) designed an automated system for web services adopting SOA paradigm.

The proposed system employs the device profile and other context information that need to be

forwarded to a composition engine in order to derive the most appropriate services to the user. The

service selection process is conducted based on three main entities including, context, composition plan,

and predefined set of rules. The composition process in the system consists of six-phases that carried out

in sequence to identify the service composition. Furthermore, the composition process has integrated

two components to facilitate the process of decision making for the service composition. These

components are building ontology as a schema for representing semantic data and data composition plan

description language that describe context-based composite services in a form of composition plans.

However, these examined approaches with theirs features often specialized does not have a global

vision of mobile apps composition. Our research intends to clearly express the relevant notions of these

existing mechanisms in heterogeneous composition process for mobile apps using meta-modeling

approach.

3. Proposed Approach

In this section we introduce our proposed composition process, heterogeneous composition process

that helps developing context-aware mobile applications. Fig. 1 demonstrates the heterogeneous

composition process. The process comprises five main steps, namely: Defining the abstract functional

architecture, Discovering suitable concrete software entities, Selecting context aware concrete software

entities, Composing Mobile app and Generating Executable Application. These steps are explained

below in furhter details.

Fig. 1: Heterogeneous Composition Process Overview.

2

5

4 3
CE21
CE22
CE2m

CE11
CE12
CE1M

CEn1
CEn2
 CEnm

Concrete Composite

Mobile App

Execution Profiles of

existing solutions
Context

information

Heterogeneous

ressources

Desired App

CE21
CE26
CE29

CE11
CE12
CE15

 CEn1
CEn2C

En8

With respect to

execution platform

1

Existing Solutions Uses Invokes
Abstract Composite

Mobile App

Deployed on

With respect to

user needs
With respect to mobile

devices constraints
With respect to

composition cost

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

97

In order to represent the desired composite mobile app (CMA) at architectural level we propose in

Fig 2.a the corresponding metamodel that provide a high-level description of the CMA architecture. The

idea is to associate the necessary information to a specific architectural element used to compose the

desired mobile app. This metamodel aims at defining how the architectural elements of the composite

app are related each other. While defining the CMA architecture, we focus firstly on the different

functionalities of the desired app (i.e. customer requirements) where each of them refers to an abstract

software entity, ignoring how they will be implemented (e.g. components, services, apps). Secondly, we

focus on the detailed description of the desired app, thus, this will help us to choose the implementation

type of each abstract software entity (i.e. each functionality described in the first architecture) to

construct this detailed architecture. This choice is delayed to the time when concrete software entities

are selected in step 4 of the proposed process. For this purpose, we need the two following architectures

to describe the CMA:

A. CMA abstract functional architecture: represents a high-level description of the desired

functionalities and their dependencies to accomplish the composite’s goal.

B. CMA abstract detailed architecture: represents a high-level description of the different concrete

software entities that will be used to implement the desired functionalities and the different Mediators

that represents the collaboration between reused concrete entities and they will be used to eliminate the

heterogeneity among these entities.

CMA management presented in Fig 2.b shows the different composition tasks that need to be

performed to composite mobile app. We associate to each role a specific architectural element used to

compose the desired mobile app. It is based on the reification of the different properties and

functionalities of existing composition mechanisms.

Fig. 2. Composition Process from architectural point view

Step1

Step4 Step5

Step3 Step2

(a): CMA Metamodel (b): Composition Tasks

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

98

Step 1: Defining the abstract functional architecture

This step aims at abstractly define the desired mobile app and focus on the definition of the different

functionalities which are required to compose the future mobile app and provide the dependencies

between these desired functionalities. We associate this ability with the collaboration manager as

demonstrated in Fig. 2.b. Collaboration manager specifies workflow and dataflow between identified

functionalities. Workflow schedules the invocations of functionalities (i.e. establishes precedence links)

and dataflow expresses the data exchanges, inputs to output, between them (i.e. establishes use links).

Other than traditional software systems, the development of apps on mobile devices (e.g. smartphones,

tablets, etc…) is constrained by their limited resources such as: small memory, a battery powered

computing environment, and availability of some devices (e.g. Wi-Fi, GPS, auto-focus camera, etc…)

(Zhang et al, 2011). For this purpose, our objective is not only to create mobile apps through the

composition of existing software entities according to user needs but also to compose mobile apps that

are sensitive to their contextual information (i.e. adaptive to their run-time environment). Thus, it is

necessary to identify the context information of the deployment environment. It represents all software

and hardware characteristics of the mobile device that will be used to run the desired mobile app. We

model this context information in three categories:

a) Deployment context: represents hardware characteristics of mobile devices.

b) Execution context: represents the current state of available devices.

c) Execution platform: represents mobile device operating system.

This different contextual information may be inferred by the system of the mobile device or identified

by the developer.

Step 2: Discovering suitable concrete software entities

After setting the desired mobile app in abstract level (i.e. according to the architectural representation

defined in the first step of the process), it is necessary to connect each abstract entity defined in the CMA

abstract functional architecture with their corresponding existing concrete entities. We associate this

role with the Discovery manager illustrated in the Fig 2.b. Discovery manager attempts to search and

chooses the corresponding concrete entities for each desired functionality by downloading them through

Internet where some of them are free while others are paying (e.g. line stores such as Google Play, App

Store or the Windows Phone Store). Or bringing them from local locations or other devices (e.g.

laptops, mobile devices, etc...). Thus, the Discovery manager exploits the abstract functional

representation of the desired app to find the different concrete entities that can be better-turned to the

user’s requirements described in this representation.

The result of this discovery task is a set of suitable concrete entities for each abstract entity (i.e.

Suitable-CE-Fun i). The concrete entities mapped to the same abstract entity are functionally equivalent,

but may vary in several non-functional aspects. In order to build a functioning mobile app adapted to the

mobile device that will support it; we propose to associate each entity with a specific Execution Profile

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

99

(EP) which contains all non-functional aspects that represent the necessary conditions for their execution

(e.g. Needed devices such as: Wi-Fi, GPS…etc., size, consumption energy…etc.).

Step 3: Selecting context aware concrete software entities

The third step in our proposed heterogeneous composition process intents to solve the issue of of

mobile devices heterogeneity that can arise when using such mobile device to deploy the desired CMA.

The quality requirements of the CMA are represented by its adaptability with the context aware of the

mobile device that will be used to run it. To ensure the correct deployment and the good functioning of

the composed mobile app we first need to assure that their composed concrete entities are adaptable to

the current context of mobile device. This step corresponds to a filtering operation which aims to select

among all concretes entities of each abstract entity (i.e. result of step 2) those that are best suited with

respect to the deployment and execution context of the mobile device where the composed mobile app

will be deployed. We associate this filtering capability with the Filtering manager as illustrated in Fig

2.b). The filtering process runs based on EP of each concrete entity and the different characteristics of

the mobile device to perform the comparison in order to select those that are adaptive to these

characteristics.

A concrete entity is conforms to mobile device context information if the comparisons of all

execution metrics with all mobile device characteristic are satisfied. The result of this step is a set of

concrete entities which are suitable to the deployment and execution context at the same time.

Step 4: Composing Mobile app

After connecting each abstract entity with its corresponding context-aware concrete entities, we need

to build the final architecture of the application. Composing Moble app step attempts to design and build

the final app architecture (i.e. CMA abstract detailed architecture) by composing these concrete entities

according to the coupling that generates the desired app with optimal composition cost. In this step we

ensure a lower composition cost to compose the mobile app by selecting each abstract entity with most

appropriate concrete entity with the minimum composition cost. The composition cost of each concrete

entity is calculated in terms of adaptability based-on composition constraints explained in this section.

The different existing composition approaches use only one kind of software entities to compose the

desired app and any of them was interested by the composition of heterogeneous entities. Typically, they

define a composite app as a collection of software entities of the same kind using for example: SOA

approach (Erl, 2005) or component-based-approach (Jifeng, Li & Liu, 2005) or other paradigms

(Amirat, Hock-Koon, & Oussalah, 2014). Based on the new paradigm XAAS (anything as a service)

(Rajasri, Arundurai & Ady, 2013), we try to overcome this limitation by providing a description

representing the CMA architecture with: services, components, apps separately, or with heterogeneous

entities (i.e. with several software entities types). Thus, our process allows building mobile apps as

exogenous or endogenous composition as depicted in Fig. 2.c. Each of constituents’ software entities

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

100

will provide a specific service. However, heterogeneity issue in the composition mechanism might

produce two kinds of heterogeneity problems:

 Heterogeneous nature of entities: the composed entities cannot directly communicate because the data

which are exchanged between these entities are not understandable (e.g. microphone provides an

audio stream and the jukebox needs to string input to perform its task).

 Heterogeneous type of entities: represent the coordination of two different types of software entities

(e.g. component connected with service).

The proposed metamodel aims to address these heterogeneity issues by proposing two kinds of

mediators as shown in Fig 2.a) where (Cimpian, Mocan & Stollberg, 2006):

 Endogenous mediator that overcomes the heterogeneity between two entities of different nature,

exchange data can require some transformation to be understandable. Endogenous mediator

represents the Mediation services that are selected to ensure these data transformations.

 Exogenous mediator this kind of mediators is intended to eliminate the heterogeneity between two

entities of different kinds. These entities cannot directly communicate owing to their different type.

Exogenous mediator aims to encapsulate related heterogeneous entities, it builds well-formed

interface for each of them in order to take advantage of their services but just with manipulating

necessary inputs and outputs independently from language implementations of these constituents

entities. For this purpose, this composition process treats four type of composition as illustrated in

the Table 1.

Table 1. Composition Types

Composition manager aims to handle CMA abstract functional architecture in order to derive the

CMA abstract detailed architecture by replacing each functionality with its appropriate context-aware

concrete entity that can implement it with respect to the cost of its composition. Composition manager

needs to perform four tasks to achieve its objective.

Mediation Task that represents the heterogeneous and/or exogenous composition, it manages use

links which represent the dataflow between desired functionalities and identifies if it is necessary to

associate this relationship with services mediation or/and to encapsulate the composed entities. Based-on

these composition constraints, Composition manager performs the selection task by calculating the

composition cost of each concrete entity in order to select the best suited one which allow to compose

the desired mobile app with the lower composition cost. The composition of adaptable concrete entities

is not sufficient to ensure that the composite app itself will be adaptable to the context of the mobile

Composition Type Heterogeneity problems Proposed Mediators

Heterogeneous Exogenous Composition Heterogeneous Nature of entities

Heterogeneous Type of entities

Endogenous Mediators

Exogenous mediators

Homogenous Exogenous Composition Heterogeneous Type of entities Exogenous mediators

Heterogeneous Endogenous Composition Heterogeneous Nature of entities Endogenous Mediators

Homogenous Endogenous Composition None heterogeneity problems None needed mediators

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

101

device. Composition manager has the role to verify, after each composition step, if the actual free

storage capacity is sufficient for deploy the composed app in this mobile device (Adaptation task). Thus,

if the consumed energy to handle the composed app does not exceeds the current battery level. If one of

these two constraints is not satisfied, Composition manager triggers the recomposition of the app using

alternative concrete entities that are selected in step 3. Last but not least, it is necessary to generate for

each composed mobile app its own EP and identify its own properties. Composition manager has the

potential to fulfill CMA EP according to the different characteristics of their constituents (Generating

EPs task).

Step 5: Generating Executable Application

Mobile apps are composed visually with the proposed architectural representation without the need to

write any lines of code. The executable model will be generated from the CMA description after

searching, filtering, and selecting the most appropriate concrete entities (i.e. CMA Abstract Detailed

Architecture) as illustrates the instantiation relation presented in the Fig. 2.b. Thus, our approach copes

with the heterogeneity of mobile platforms. It is able to support heterogeneous target environments

ranging from CMA architecture to mobile platforms. From this architectural model, the generation of the

concrete CMA (i.e. application code) towards a specific platform is based on MDD mechanisms using

transformations: model to code. This task is the responsibility of Generating CMA manager. This step

proves that our process has the potential to deploy and to migrate the same CMA between different

mobile platforms (e.g. android, iOS).

4. Conclusion

In this paper we have presented a conceptual framework for our proposed idea to provide

heterogeneous composition process for mobile apps. This process is defined at architectural level and

consists of five main steps, namely: Defining the abstract functional architecture, Discovering suitable

concrete software entities, Selecting context aware concrete software entities, Composing Mobile app

and Generating Executable Application. The proposed process aimed to meet the needs of users and

compose mobile apps that are sensitive and adaptive to the contextual information of the mobile device

in which they will be installed, and also to facilitate the task of mobile apps composition while ensuring

the efficiency of the generated app. As the future work directions for our work in this paper, we plan to

evaluate our proposed framework to investigate its performance and effectiveness with respect to some

real life applications.

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

102

References

Amirat A, Hock-Koon A., and Oussalah M. C. (2014). Object-Oriented, Component-Based, Agent-

Oriented and Service Oriented Paradigms. Software Architecture 1 (ed M. C. Oussalah), John

Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118930960.ch1

Chakraborty, D., Joshi A. , Finin T. and Yesha Y. (2005). Service Composition for Mobile

Environments. Mobile Networks and Applications, vol. 10, no. (4) (2005), pp. 435-451.

Cimpian E., Mocan A. and Stollberg M. (2006). Mediation Enabled Semantic Web Services Usage. In

the First Asian Semantic Web Conference, (ASWC 2006), Beijing, China, September, 2006, pp.

459-473.

Elfirdoussi S., Jarir Z. & Quafafou M. (2014). Web Service Composition Based on Popularity. Journal

of Computer Science and Information Technology. vol. 4, no. (7), Academy & Industry Research

Collaboration Center (AIRCC), pp. 251- 263.

Erl T. (2005). Service-Oriented Architecture (SOA) Concepts, Technology and Design. Prentice Hall,

2005.

Furno, A. & Zimeo E. (2014). Context-aware Composition of Semantic Web Services. Mobile Networks

and Applications, vol. 19, no. (2), pp. 235-248.

Furno A. & Zimeo E. (2012). Context-Aware Design of Semantic Web Services to Improve the

Precision of Compositions. In the 1st International Conference on Context-Aware Systems and

Applications, (ICCASA 2012), Ho Chi Minh City, Vietnam, November, 2012, pp. 97 – 107.

Han S. N., Lee G. M and Crespi N. (2014). Semantic Context-Aware Service Composition for Building

Automation System. IEEE Transactions on Industrial Informatics, vol. 10, no. (1), 2014, pp. 752 –

761.

Hock-Koon, A. & M. Oussalah (2010). Expliciting a Composite Service by a Metamodeling Approach.

In the 4th International Conference on Research Challenges in Information Science (RCIS),Nice,

France, May 2010, pp. 533- 544.

Hock-Koon A. & Oussalah M. (2010). Composite Service Metamodel and Auto Composition. Journal

of Computational Methods in Science and Engineering, vol. 10, no. (2), (2010), pp 215-229.

Jeffrey S. H. Michael F. and Julie A. A. (2015). The Future Of Mobile Application Development. The

Mobile App Development Playbook for 2015, Forrester.

Jifeng H., Li X. & Liu Z. (2005). Component-based Software Engineering. In Theoretical Aspects of

Computing–ICTAC, Lecturer Notes in Computer Science, vol. (3722), 2005, Springer. pp. 70-95.

Li R., Zhou Z. and Qiu Y. (2008). Automated Composition of Semantic Web Service using Data

Mediator and Complete Backward Tree. In the 2008 International Conference on Computer

Science and Software Engineering, (CSSE 2008), Wuhan, China, December 2008, pp. 390 – 393.

Rajasri K., Arundurai R., and Ady K. D. (2013). Qos Aware and Cost Based Optimization of Service

Composition Using Genetic Algorithm. International Journal of Computer Science, vol. 1, no. (6),

pp. 24- 29.

Rosa R. E. V. S & Lucena V. F. (2011). Smart Composition of Reusable Software Components in

Mobile Application Product Lines. In the 2nd International Workshop on Product Line Approaches

in Software Engineering,Waikiki, Honolulu, Hawaii, USA, May 2011, pp. 44 – 49.

Journal of Advanced Computer Science and Technology Research, Vol.5 No.3, September 2015, 93-103

103

Russell, S. & Norvig, P. (2006). Artificial Intelligence: A Modern Approach, Prentice Hall, 2006.

Schmidt H., Kapitza R. & Hauck F. J. (2007). Mobile Process based Ubiquitous Computing Platform: A

Blueprint. In the 1st Workshop on Middleware-Application Interaction, in conjunction with the

European Conference on Computer Systems, (EuroSys 2007). Lisbon, Portugal, March 2007,

pp.25- 30.

Sheshagiri M, Sadeh N. M. and Gandon F. (2004). Using Semantic Web Services for Context-Aware

Mobile Applications. In the MobiSys 2004 Context-Awareness Workshop, Massachusetts, USA,

June 2004.

Wu Z., Ranabahu A., Gomadam K., Sheth A. P. and Miller J. A. (2007). Automatic Composition of

Semantic Web Services Using Process and Data Mediation. Technical Report, LSDIS lab,

University of Georgia, February , 2007.

Zhang X., Kunjithapatham A., Jeong S. and Gibbs S. (2011). Towards an Elastic Application Model for

Augmenting the Computing Capabilities of Mobile Devices with Cloud Computing. Mobile

Networks and Applications, vol. 16, no. (3), pp. 270-284.

