
Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

Mining XML Document Based on
Structure

Mehdi G Duaimi, Yasir Abd Alhamed
Computer Science Department, University of Baghdad ,

Baghdad, Iraq
mehdi_duaimi@ymail.com, yasir_sh79@yahoo.com

Article Info

Received: 13th September 2013

Accepted: 15st November 2013

Published online: 15th December 2013

ISSN (online): 2231-8852

ABSTRACT

With the growing number of XML documents on the Web it becomes essential to effectively organize

these XML documents in order to retrieve useful information from them. A possible solution is to

apply clustering on the XML documents to discover knowledge that promotes effective data

management, information retrieval and query processing. This paper presents a framework for

clustering XML documents by structure. Modelling the XML documents as rooted ordered labeled

trees, we study the usage of structural distance metrics in hierarchical clustering algorithms to detect

groups of structurally similar XML documents. We suggest the usage of structural summaries for

trees to improve the performance of the distance calculation and at the same time to maintain or even

improve its quality.

Keywords: XML, Tree Similarity Measure, structural summary, clustering, DTDs

1. Introduction

XML documents are becoming ubiquitous because of their rich and flexible format that can

be used for a variety of applications ranging from scientific literature and technical

documents to handling news summaries utilize XML in information representation and

exchange.

More than 50 domain-specific languages have been developed based on XML (Cover, 2005),

Such as MovieXML for encoding movie scripts, GraphML for exchanging graph structured

data, Geography Markup Language (GML) for expressing geographical features and

interchanging them over the Internet, Twitter Markup Language (TML) for structuring the

twitter streams, Chemical Markup Language, Mathematics Markup Language (MathML) and

many others (Suchanek et al., 2001).

 XML has also been used to represent the web-based free-content encyclopedia known as

Wikipedia, which has more than 3.4 million XML documents, in the last four years, the

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

184

INEX (Initiative for the Evaluation of XML retrieval) has focused on clustering large

collections of Documents using representations of structure documents.

The increased popularity of XML has raised many issues regarding the methods of how to

effectively manage the XML data and retrieve these XML documents in large collections. A

possible solution to the problem of handling large XML collections is to group similar XML

documents. This task of grouping in data mining is referred to as clustering. Clustering task

group unknown data into smaller groups according to the data commonality without having

any prior knowledge about the dataset. The clustering of similar XML documents has been

perceived as potentially being one of the more effective solutions to improve document

handling by facilitating better information retrieval, data indexing, data integration and query

processing (Tran, 2009). In spite of its potential, there are several challenges in clustering

XML documents. Unlike the clustering of text documents or flat data, clustering of XML

documents is an intricate process and consequently the most commonly used clustering

methods for text clustering cannot be used for clustering these documents. This is due to the

fact that XML documents are semi-structured in nature and have a flexible structure as well

as their content showing the semantics. The semi-structured nature of XML data requires the

computation of similarity by including their structural similarity (Kutty et al. 2008).

2. Related Works

Sangeetha Kutty MCIS (Faculty of Science and Technology at Queensland University of

Technology Brisbane, Queensland, Australia) 2011, introduces the structural similarity in the

form of frequent subtrees and then uses these frequent subtrees to represent the constrained

content of the XML documents in order to determine the content similarity.

Joe Tekli et al (University of Bourgogne) 2007, introducing the notion of structural

commonality between subtrees, putting forward an algorithm for its discovery) an efficient

algorithm was introduced for computing tree-based edit operations costs able to consider, via

the sub-tree commonality notion, XML sub-tree structural similarities) a prototype was

developed to evaluate and validate our approach.

Lian et al. (Faculty of Information Technology Queensland University of Technology) 2004,

represents the XML document as graph-based and measures the common set of nodes and

edges appearing between the documents. To retain the structure information from the XML

documents.

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

185

Jeong & Keun, Leung et al., Jeong & Keun 2008,use the sequential pattern mining to extract

the frequent paths from XML documents and then use them for clustering.

Shen and Wang (University of Wisconsin – Madison, WI, U.S.A.) 2003, breaks the XML

documents into a number of macro-path sequences where each macro-path contains the

properties of an element such as its name, attributes, data types and textual content. A matrix

similarity of the XML documents is then generated based on the macro-path similarity

technique. Nierman & Jagadish, Dalamagas et al.(University of Michigan) 2004 have been

proposed to represent the XML documents as tree-based and use the tree edit distance to

measure the similarity between the documents using the document structure.

Lee et al. 2002, introduces a complex computational technique to map the element similarity

between the schemas by considering the semantics, immediate descendent and leaf-context

information. Its purpose is to be used as the pre-processing stage for applications such as data

integration.

Cobéna et al. (2002) proposed XyDiff, an algorithm for detecting changes in XML

documents. The algorithm first computes a signature (i.e., hash value) and a weight (i.e.,

subtree size) for every node in both documents in a bottom-up fashion (the root nodes of the

two documents end up with the largest weights). Next starting with the root nodes of the two

documents XyDiff compares the signatures of the two nodes. If they are equal, the two nodes

are matched; otherwise, their child nodes will be inserted into a priority queue in which the

subtrees with the largest weights are always compared first.

3. XML

Extensible Markup Language (XML) is an abbreviated version of Standard Generalized

Markup Language (SGML), for the exchange of structured documents over the Internet.

Unlike HTML, XML readily enables the definition,transmission, validation, and

interpretation of data between differing computing platforms and applications. XML permits

people in a specialized field, such as chemistry, finance, or environmental data collection, to

develop XML schema that define the markup language for the exchange of specialized data

unique to their fields. XML schema is the primary data format supported for data exchange

by the State/EPA Environmental Information Exchange Network (Exchange Network).

XML is extensible, meaning a developer can extend the language by devising new tags to

describe and share data in any specialized way desired as long as the new tags follow the

XML syntax defined by the W3C XML specification. XML is very useful for organizations

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

186

that do not share but need to develop a common data exchange format. Its extensibility

provides flexibility in developing exchange formats in XML schema, provided all partners

agree on the data format and definitions of the data it contains

4. Clustering

 is the task of grouping a set of objects in such a way that objects in the same group (called

cluster) are more similar to each other than to those in other groups (clusters). It is a main

task of exploratory data mining, and a common technique for statistical data analysis used in

many fields, including machine learning, pattern recognition, image analysis, information

retrieval, and bioinformatics. Cluster itself is not one specific algorithm, but the general task

to be solved. It can be achieved by various algorithms that differ significantly in their notion

of what constitutes a cluster and how to efficiently find them. Popular notions of clusters

include groups with small distances among the cluster members, dense areas of the data

space, intervals or particular statistical distributions. Clustering can therefore be formulated

as a multi-objective optimization problem. The appropriate clustering algorithm and

parameter settings (including values such as the distance function to use, a density threshold

or the number of expected clusters) depend on the individual data set and intended use of the

results.

5. Clustering of Xml Documents

After establishing a motivation to cluster XML documents, we turn our attention to the

development of an effective clustering algorithm. In this section, we define a method to

summarize XML documents such that a simple and efficient

Similarity metric can be applied. Then, we show how this metric can be used in combination

with a clustering algorithm to divide a large collection of XML documents into groups

according to their structural characteristics.

Although our definitions and methodology assume a database of XML documents, they can

be seamlessly applied for any collection of semi structured data

6. Document Representation

XML documents can be represented as labelled trees. In trees representing documents,

internal nodes are labelled by element/attribute names and leaves are labelled by textual

content. In the tree representation, attributes are not distinguished from elements, both are

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

187

mapped to the tag name set; thus, attributes are handled as elements. Attribute nodes appear

as children of the element they refer to and, for what concerns the order, they are sorted by

attribute name, and appear before all sub-elements “siblings”.

XML document elements may actually refers to, that is, contain links to, other elements.

Including these links in the model gives rise to a graph rather than a tree. Even if such links

can contain important semantic information that can be exploited in evaluating similarity,

most approaches disregard them and simply model documents as trees.

7. Structural Summaries

In order to gain in performance, Structural summaries are produced using a dedicated

repetition / nesting reduction process. The structural summary of an XML tree comes down

to a modified tree in which the redundancies due to nested repeated and repeated XML nodes

are eliminated ,The tree is traversed using pre-order traversal. For the current node, check if

there is an ancestor with the same label. If there is no such ancestor, go on to the next node. If

there is such ancestor, then move all current nodes’ subtrees to that ancestor. The subtrees are

added at the end of the ancestor’s child list so that we will traverse these nodes later. Nothing

will be moved if the current node is a leaf, as shown in code list (1)

Pseudo code list (1) Reduce

Nesting.
Input

 TreeNode : as TreeNode

Output

 Tout : as TreeNode

Procedure
1. Let first node as parent

node

2. If have children then

For (first-child To last-child

)

 Let child node as parent node

End for

3. For (first-child End if

4. If have children then

For (first-child To last-child)

 If has nesting then

 Delete all nesting

 else

 take other child as parent

node

 end if

End for

Else

End if

5. End

Pseudo code list (2) reduces Repeat.

Input

 TreeNode : Node

 CPath :currentPath

 h : hash table

Output

 Tout : as TreeNode

Variables

 S : string

 destination: Treenode

 Procedure

1. S = CPath + "/" + node-name;

2. If hash table is not containing this path (S)

 then

 Add this path to hash table

 For (first-child to last-child)

 Call reduce Repeat Procedure

 End for

3. else

 destination = the Node in hash table

which contain- the same path

For (TreeNode -first-child To

TreeNode last-child)

Move child to destination

Delete TreeNode

End for

4. End if

5. End

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

188

The algorithm start by taking the root node as a parent node and check, if it has a child, then,

taking the first child as new parent and check if the new parent has child if it has, then check,

if it has nesting, then delete nesting if does not go to second child until reaching the last node.

The aim of Repetition Reduction is to reduce the repeated nodes in the original tree. The tree

is traversed using pre-order traversal. At each node, check whether the path from the root to

the node already exists or not by looking it up in a hash table keeping the paths. If there is no

such a path, store this node in the hash table, with its path being the index. If there is already

one such path in the hash table, then this node is a repeated node, and in that case:

a) move all its subtrees to the destination node that we find in the hash table by using the

path as index,

b) add the subtrees at the end of the destination node's child list to traverse these subtrees

later, and

c) Delete the current node and start to traverse the subtrees which have been moved to the

destination node.

After traversing all the nodes that have been moved, we go on to traverse the right sibling

Of the node which is deleted if there is no such node the traversal ends. Repetition

reduction requests only a pre-order traversal on the original tree. And Pseudo code list

(3.3)

The algorithm Creates path by adding Cpath to node name, checks hash table if it has not this

path it adds it to hash table and checks all children, else, it takes the node which is the same

in hash table and adds all children of treeview to this node lastly, it deletes treeview and

returns to loop until reaching the last node.

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

189

Figure (2): Repetition Reduction

Figure (1): Nesting Reduction

a- First tree

b- Tree after

deleting node A

c- Tree after

deleting node C

A

C D D C

A

C D

C

D

A

C A D

C

C

C

D

A

Delete

A

C D

C

C

C

D

C

Delete

A

C D

C

C

D

C

Delete

d- Tree after

deleting C node
e- Tree without

nesting

d- Tree before

deleting node C

and D

d- Tree without

Repetition

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

190

8. Tree Similarity Measure

The editing operations available in the tree edit distance (computing the distance between two

trees) are replacing, deleting, and inserting a node. To each of these operations a cost is

assigned, that can depend on the labels of the involved nodes. The problem is to find a

sequence of such operations transforming a tree T1 into a tree T2 with minimum cost. The

distance between T1 and T2 is then defined to be the cost of such a sequence. In this work,

we consider Chawathe's (II) algorithm as the basic point of reference for tree edit distance

algorithms. This algorithm has quadratic complexity (O (MN), M and N are the dimensions

of the matrix that represents the edit graph). Also, it fits well in the context of XML data,

since it permits insertion and deletion only at leaves, as show in figure (3) and Pseudo code

list (3).

 This procedure calculates distances between XML documents, it stores distance in matrix

first loop will calculates first row in matrix and the second one calculates the first column,

while the third loop calculates the other rows and columns for the matrix of distances.

Pseudo code list (3) CalculateDistance.

Input

 S: Tree Node

 T: Tree Node

Output

 D [i, j]: array with two dimensions contain the distance

Procedure

1. For (S-first-child To S-last-child)

Calculate distance for first row

 D[i, 0] = D[i - 1, 0] +CalculateDistance(S.Nodes [i -

1]) +1

2. end for

3. For (T-first-child To T-last-child)

Calculate distance for first column

 D [0, j] = D [0, j –1] +

CalculateDistance (T.Nodes [j - 1]) + 1

4. end for

5. For (S-first-child To S-last-child)

For (T-first-child To T-last-child)

m1 = D[i - 1, j] + CalculateDistance

 (S.Nodes[i - 1]) + 1

m2 = D[i, j - 1] + CalculateDistance

(T.Nodes[j - 1]) + 1

m3 = D[i - 1, j - 1] + CalculateDistance

(S.Nodes[i - 1],T.Nodes[j - 1])

Select minimum distance D[i, j] =

Math.Min(Math.Min(m1,m2), m3)

end for

end for

6. end

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

191

Replace N, C

Delete D Insert D

D

Replace A, C Replace F, A

Figure (3): The minimum cost to transform T1 to T2 equal (6) unit

C

A

A F D

C

N

C

D

C A

A

D

C

N

C

D

D C A

A

C

C

C

D C A

A

C

C

C

D

C

A

C A D D

E C

C

D C A

A

C

C

C

A

F D

C

N

C

D

D C A

A

C

C

C

D

D

D

Replace Node (3)

Delete Node (1)

Insert Node (2)

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

192

9. Clustering

In data mining, hierarchical clustering is a method of cluster analysis which seeks to build a

hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:

Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster,

and pairs of clusters are merged as one moves up the hierarchy.

Divisive: This is a "top down" approach: all observations start in one cluster, and splits are

performed recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. The results of

hierarchical clustering are usually presented in a dendrogram. Distance between any two

clusters can be computed using any of the following criterions:

i. Single-linkage clustering (also called the connectedness or minimum method), we

consider the distance between one cluster and another cluster to be equal to the

shortest distance from any member of one cluster to any member of the other cluster.

If the data consist of similarities, we consider the similarity between one cluster and

another cluster to be equal to the greatest similarity from any member of one cluster

to any member of the other cluster.

ii. Complete-linkage clustering (also called the diameter or maximum method), we

consider the distance between one cluster and another cluster to be equal to the

greatest distance from any member of one cluster to any member of the other cluster.

iii. Average-linkage clustering, we consider the distance between one cluster and another

cluster to be equal to the average distance from any member of one cluster to any

member of the other cluster.

10. MST and Single-Linkage clustering:

 after calculating the tree edit distance the prim’s algorithm is used to find minimum

spinning tree (MST) ,Prim's algorithm is a greedy algorithm that finds a minimum spanning

tree for a connected weighted undirected graph. This means it finds a subset of the edges that

forms a tree that includes every vertex, where the total weight of all the edges in the tree is

minimized. figure (4.a) dataset contains 8 XML files and the weight between each pair,

which is calculated by tree edit distance algorithm, minimum spanning tree (MST) of a graph

implemented on this dataset as shown in figure (4.b), the single link clusters for a clustering

threshold equal four can be identified by deleting all the edges with weight w ≥ 4 from the

MST of G. The connected components of the remaining graph are the single link clusters

,There are 1 connected component that include nodes (A,C,D,E,F,G) and 2 Nodes (B,H)

which are not connected to other nodes they be considered as single-node clusters .This

indicates the presence of 3 clusters: cluster 1 with (A,C,D,E,F,G) as members ,cluster 2 with

(B) as member and cluster 3 with (H) as member. As shown in figure (4.c).

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Dendrogram
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Weighted_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Graph_theory

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

193

Figure (4.a): dataset contains 8 XML files and the weight between each pair

Figure (4.b) minimum spanning tree (MST) of a graph

MST is implemented in figure 4.c where it started from (A C) (C F) (F D) (F E)

(F H) (E B) (E G).

Figure (4.c) single linkage clustering

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

194

Single linkage clustering is implemented in figure (4.c) where it deletes each link having a

threshold bigger or equal to 4 , therefore; it deletes links (F H) and (E B), that generates

three clusters (A, C, D, F, E, G), (H) and (B).

Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected

weighted undirected graph. This means it finds a subset of the edges that forms a tree that

includes every vertex, where the total weight of all the edges in the tree is minimized.

The above algorithm involves four stages to calculate the MST

1. Select node zero as first node

2. reset select node row

3. Select minimum weight on this node’s columns by function (getminimum)

4. Add select node name and weight of link to list (Mst.add) depending on function

(getminimum),go to step 2.

Pseudo code list (4) prim's algorithm

Input

 minimum no = 0 ;

 Matrix [i, j]: array with two dimensions

 contain the distance

Output

 D [i, j]: array with two dimensions

 contain the distance

Mst :list

Procedure

1. For (i=0 to matrix-length) zero(matrix,

arr1[i]) minimum_no = getminimum(matrix, arr1,

out Where, ref

-next_node)

If (minimum_no != 0) then

sum + = minimum_no

end if

2. add the name and weight of link to list

(Mst.add)

3. end for

4. End

http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Weighted_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Graph_theory

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

195

The getminimum function returns the minimum no in the row where step 2 is uses to check

column and takes the first value bigger than zero. After that step 5 selects the minimum no in

the row.

11. Experimental Results

Experiments are conducted on real and synthetic XML documents. Two sets of 1000

documents were generated from 10 real-case and synthetic DTDs, using an adaptation of the

IBM XML documents generator. We varied the MaxRepeats parameter to determine the

number of times a node will appear as a child of its parent node. For a real dataset, we

considered the online version of the ACM SIGMOD Record. We experimented on a set of

203 documents corresponding to OrdinaryIssuePage.dtd (80 documents), roceedingsPage.dtd

(23 documents) And IndexTermsPages.dtd (100 documents).In this section the performance

will be examined on both the real and synthetic XML documents by using our algorithm,

when using threshold equal to 5 the number of cluster that will appear is seven, with high PR

and R values on synthetic XML document as shown in table (1).

Pseudo code list (5) getminimum

Input

 arr [,]: array with two dimensions contain

the distance

 T: Tree Node

Output

 D [i, j]: array with two dimensions contain

the minimum distance

Variable

 w = 0

 Int max : variable equal to the array length

 Procedure

1. int max = arr.GetLength(1)

2. for (0 to index.Length)

for (0 to max)

if arr[index[j],i] And big or equal 0) then

temp = arr[index[j], i]

else

exit ;

endif

end for

3. end for

4. w= 0;

5. for (0 to index.Length)

for (0 to max)

if (arr[index[j], i] <= temp && arr[index[j], i]

>= 0)

temp = arr[index[j], i]

w= i

s = index[j]

return temp

end if

end for

6. end for

7. End

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

196

Table 1: Clustering process on synthetic data with threshold = 5

\

While three clusters concluded from real data which produce PR, R values less than synthetic

data because that some files produced are mis-clustered as shown in table (2).

Table (2): Clustering process on real data with threshold = 5

12. Timing Analysis:

We note that the process of simplification of structure for XML files reduced the time

required to calculate the distance between two files to 95%, where the blue line represent

time line to calculate distance without reduce structure and red line represent the time line

with reduce structure

Cluster No.

DTD Synthetic

a b c

1 fruitbasket.dtd

population.dtd

personal.dtd

customer.dtd

400 37 0

2 bookstore.dtd 83 0 17

3 memo.dtd 100 0 0

4 tvschedule.dtd 100 0 0

5 newspaper.dtd 100 0 0

6 recipes.dtd 80 0 20

7 catalog.dtd 100 0 0

PR=0.963

R=0.963

F-

value

=0.96

3

threshold =5

Clust

er

No.

DTD Real-Life

a b c

1 IndexTermsPages.d

td

10

0

0 0

2 OrdinaryIssuePages

.dtd

29 0 51

3 ProceedingsPage.dt

d

16 16 7

PR=90% R=71% F-value=0.8

threshold =5

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

197

Figure (5): Timing Results (to compute pairwise distance) for big data with reduce and

without reduce structure

13. Conclusion

XML is becoming a standard in many applications because of its universal and powerful tree

structure. On the internet for example, unstructured documents are being replaced by such

structured documents, so that approaches that have been designed to tackle internet resources

need to be revisited in order to take advantage of the new structured nature of the documents.

This work successfully applied clustering methodologies for grouping XML documents

which have similar structure, by modeling them as rooted ordered labeled trees, and utilizing

their structural summaries to reduce time cost while maintaining the quality of the clustering

results. We performed extensive evaluation using synthetic and real data sets, providing

timing analysis as well as precision PR and recall R values for each test case. Our results

showed that:

a) XML document is better represented as tree model by using DOM, because DOM

parser is faster than SAX because it access whole XML document in memory.

b) By use Structural summaries the time needed to calculate the tree distances is

decreased for whole clustering procedure.

c) Chawathe's algorithm with structure summaries improves high performance and

shows excellent clustering quality.

d) Excellent results were obtained when assigning new incoming XML documents to

already discovered clusters, instead of applying a clustering method again to the

whole set of documents, including the new ones, Re-clustering is expensive since all

pairwise distances should be calculated again.

0

1000

2000

3000

4000

5000

6000

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

Series1

Series2

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

198

References

Cover R.. Xml applications and initiatives. http://xml.coverpages.org/xmlApplications.html,

2005.

Suchanek F. M., A. S. Varde, R. Nayak, and P. Senellart. The hidden web, xml and the

semantic web: scientific data management perspectives. Pages 534–537. ACM, (2011).

Tran T., S. Kutty, and R. Nayak. Utilizing the structure and content information for xml

document clustering. In S. Geva, J. Kamps, and A. Trotman, editors, Advances in Focused

Retrieval, volume 5631 of Lecture Notes in Computer Science, pages 460–468. Springer

Berlin / Heidelberg, (2009).

Kutty, S., Tran, T., Nayak, R., & Li, Y. (2008). Clustering XML documents using closed

frequent subtrees: A structural similarity approach. In Focused Access to XML Documents

(pp. 183-194). Springer Berlin Heidelberg.

Bray, T, Paoli, J and Sperberg-McQueen, C M Extensible Markup Language (XML) 1.0:

World Wide Web Consortium (1998).

EPA United States Environmental Protection, Agency the State/EPA Environmental

Information Exchange Network (2002).

W3C: http://www.w3c.org.

Braga D., A. Campi, S. Ceri, M. Klemettinen, and P. L. Lanzi. A tool for extracting XML

association rules. In Proceedings. 14th IEEE International Conference on Tools with

Artificial Intelligence,. (ICTAI 2002)., pages 57–64, (2002).

Wan J. W. W. and G. Dobbie. Mining association rules from XML data using

XQuery. In Proceedings of the second workshop on Australasian information security,Data

Mining and Web Intelligence, and Software Internationalisation, pages 169–174.

Australian Computer Society, Dunedin, New Zealand,(2004).

Doucet A. and M. Lehtonen. Unsupervised classification of text-centric XML document

collections. In 5th International Workshop of the Initiative for the Evaluation of XML

Retrieval, INEX, pages 497–509, (2006).

Vercoustre A. M., M. Fegas, S. Gul, and Y. Lechevallier. A flexible structured based

representation for XML document mining. In Advances in XML Information Retrieval

and Evaluation, pages 443–457. (2006).

Paice.C. D. Another Stemmer. ACM SIGIR Forum, 24(3):56–61, (1990).

 Porter M. F.. An algorithm for suffix stripping. Program, 14(3):130–137, (1980).

Aggarwal C. C. and H. Wang. Graph data management and mining: A survey of algorithms

and applications. In Managing and Mining Graph Data, pages 13–68.(2010).

Anderson R.. Professional XML. Wrox Press Ltd, Birmingham, England, (2000).

Candillier L., L. Denoyer, P. Gallinari, M. C. Rousset, A. Termier, and A. M.

Vercoustre.Mining XML documents. (2007).

Selkow S. M., The tree-to-tree editing problem, Information Processing Letters 6 ,184-

186(1977).

Zhang K., D. Shasha, Simple fast algorithms for the editing distance between trees and

related problems, SIAM Journal of Computing 18 1245-1262 (1989).

Chawathe S. S., A. Rajaraman, H. Garcia-Molina, J. Widom, Change Detection in

Hierarchically Structured Information, in: Proceedings of the ACM SIGMOD Conference,

USA, pp. 493-504 (1996).

http://www.w3c.org/

Journal of Advanced Computer Science and Technology Research, Vol.3 No.4, December 2013, 183-199

199

Chawathe S. S., Comparing hierarchical data in external memory, in: Proceedings of the

VLDB Conference, Edinburgh, Scotland, UK, pp. 90-01(1999).

Tran, T., Nayak, R., & Bruza, P. (2008, November). Combining structure and content

similarities for XML document clustering. In Proceedings of the 7th Australasian Data

Mining Conference-Volume 87 (pp. 219-225). Australian Computer Society, Inc..

Cobéna G., Abiteboul S., and Marian A.. Detecting Changes in XML Documents. In

International Conference on Data Engineering (ICDE'02), San Jose, California, (2002).

Shen and Wang (Wisconsin Univ.): X-Diff: an effective change detection algorithm for XML

documents (2003).

Lee, J.W., K. Lee and W. Kim, 2002. Preparations for semantics-based XML mining.

Proceedings of the IEEE International Conference on Data Mining, Nov. 29-Dec. IEEE

Xplore Press, San Jose,USA, pp: 345-352. DOI: 10.1109/ICDM. 989538(2002).

Nierman, A. and H.V. Jagadish,. Evaluating structural similarity in XML documents.

University of Michigan(2004).

Tekli, J., Chbeir, R., & Yetongnon, K. (2007). Efficient XML Structural Similarity Detection

using Sub-tree Commonalities. In SBBD (pp. 116-130).

