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ABSTRACT 

Neural networks have emerged as a field of study within artificial intelligent AI and engineering via the 

collaborative efforts of engineers, physicists, mathematicians, computer scientists, and neuroscientists. 

This study deals with intelligent technique's modeling for a linear response of suspension arm. The finite 
element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the 

response of suspension arm. The neural network model has three inputs representing the load, mesh size 

and material while three output representing the maximum principal stress, Von Mises and Tresca. 
Regression analysis between finite element results and values predicted by the neural network model was 

made, and RBFNN proposed approach was found to be highly effective with least error in identification 

of stress of suspension arm. Simulated results show that RBF can be very successively used for reduction 
of the effort and time required to predict the stress response of suspension arm as FE methods usually deal 

with only a single problem for each run.  

Keywords: RBFNN; FE; Vehicle suspension arm; neural network 

1. Introduction 

Modeling and simulation are indispensable when dealing with complex engineering systems. It 

makes it possible to do an essential assessment before systems are built. It can alleviate the need 

for expensive experiments, and it can provide support in all stages of a project from conceptual 

design, through commissioning and operation. RBFNN is a robust and versatile computational 

method that can simulate the physical behavior of suspension arm. The growth of neural 

networks has been heavily influenced by the RBFNN. The application of the RBF network can 

be found in pattern recognition (Musavi et al., 1992). The two most important parameters of 

RBFNN, the center and the covariance matrix, have been researched thoroughly (Musavi et al., 

1992). RBFNN models are the popular network architectures used in most of the research 
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applications in medicine, engineering, mathematical modeling, etc. (Coccorese et al., 1994; De 

Alcantara et al., 2002). RBFNN is based on supervised learning. RBF networks were 

independently proposed by many researchers (Ramuhalli et al., 2002; Chady et al., 2001) and 

RBFNN are also good at modeling linear data and can be trained in one stage also learn the given 

application quickly. 

Neural networks have been used in mechanical engineering problems since the early 1990's. 

To minimize error factors, neural networks containing radial basis functions, can be used in 

many of the same situations in which back-propagation networks (Akeel and mohammed, 2008; 

Abdullah, 2009) are used but the edge goes to RBFNN because RBFNN provide fast learning & 

straight forward implementation (Rautenberg et al., 2006). To properly train the network, the 

necessary suitable independent training, testing and valid data sets in shape of maps are 

collected, synthesized and applied to the network. 

These software packages contain computationally efficient numerical simulation routines for 

executing realistic full-motion behavior of complex mechanical systems and provide quick 

analysis for multiple design variations toward an optimal design (Erdman et al., 2001). This 

paper includes the study on the influences of the artificial intelligent on the response suspension 

lower arm by using RBFNN. MSC Nastran finite element techniques have been used as a tool to 

model the mechanical properties of the suspension arm in conjugation. Three-dimensional linear 

tetrahedral solid elements (TET10) used for the initial analysis based on the loading conditions.  

The model is constructed through the use of the neural network design (nntool) toolbox in 

MATLAB. The comparison results with other traditional methods also prove its superiority. The 

proposed approach was found to be highly effective in identification stress of lower arm. In 

contrast to this work, we focus on the issue of enhancing reliability of RBFNN in the presence of 

gross errors. 

 

2. Model Description 

Vehicle suspension is a mechanism locating between the sprung mass (vehicle body) and the 

unsprung masses (wheels) of the vehicle. The suspension provides forces between these two 

masses of the vehicle according to certain state variables of the vehicle. A good car suspension 

system should have a satisfactory road holding ability, while still providing comfort when riding 

over bumps and holes in the road. When the bus is experiencing any road disturbance the bus 

body should not have large oscillations, and the oscillations should dissipate quickly. A simple 

three-dimensional model of suspension arm was modeling by used Solid Works software. Fig.1 

shows the structural model.  
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Fig.1. Structural Model  

The overall dimensions are shown in Fig.2. 

 

 

Fig.2. Overall Dimension 
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3. Mechanical Properties 

Material model and material properties play an important role in the result of FE method. The 

material properties are one of the major inputs, which is definition of how the material behaves 

under the cyclic loading conditions. The materials parameters required depend on the analysis 

methodology being used. The mechanical properties of 7075-T6 aluminum alloy are shown in 

Table 1. 

 

Table 1: Mechanical properties of aluminum alloy 7079-T6 

Material Young’s 

Modulus (GPa) 

Poisson’s  

ratio 

Tensile strength  

(MPa) 

Yield strength 

(MPa) 

Aluminum alloy 

AA7079-T6 

72 0.33 503 572 

 

4. Artificial Neural Network 

RBFNN have increasingly attracted interest for engineering applications due to their 

advantages over traditional multilayer perceptrons, namely faster convergence, smaller 

extrapolation errors, and higher reliability. Over the last few years, more sophisticated types of 

neurons & activation functions have been introduced in order to solve different sorts of practical 

problems (Satish, 2005; Kurban and Besdok, 2009). 

In particularly, RBFNN (Satish, 2005) have proved very use full for many systems and 

applications. RBFNN is defined in the literature as a kind of ANN that has radial activation 

functions on its intermediary layer. The function approximation problem has been tackled many 

times in the literature by using RBFNN. RBFNN were robust used in the context of neural 

networks as linear and nonlinear function estimators and indicated their interpolation capabilities 

by Broomhead and Lowe (Broomhead and lowe, 1988). 

The neural network is a mapping between its inputs and outputs based on a number of known 

sample input-output pairs. In general, the more samples available to train the network, the more 

accurate the representation of the real mapping will be. These samples are obtained by solving 

the direct problem (times), in its simplest form, a Radial Basis Function Neural Networks 

(RBFNN) consists of three layers of neurons are shown in Figure 3. 

The first layer acts as the input layer of the ANN. The second layer is hidden layer as a high-

scale dimension, which promotes a linear transformation of input space dimension by computing 

radial functions in their neurons. And the third one, the output layer, outputs the ANN response, 

promoting a linear transformation of the intermediary layer high-scale dimension to the low-

scale dimension (Pandya, 1995).  

For effective predicting of suspension arm, the simulation data from MSC Nastran-Patran 

software has been used for training and testing. In the present study, inputs are selected as load, 

Mesh size and material. The NN outputs have been termed as four output node representing the 

maximum principal stress, von Mises and Tresca as shown in Figure 4. 
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Fig.3. Radial Basis Function Neural Networks 

 

 

          
Fig.4. Model of RBFNN approach for suspension arm 

 

One of the advantages in the RBFNN use is the training speed, taking into account that this 

process involves, usually, two distinct stages: an unsupervised training and a supervised training. 

In the unsupervised training the centers are created for the intermediary layer. Commonly, this 

stage employs means algorithm (Rautenberg et al., 2006).  

In supervised training, a linear method is employed to minimize the established error 

measure. However, it is important to note that the RBFNN performance measure is intrinsically 

linked to the intermediary layer determination. A characteristic feature of radial function (Simon, 

2002) is that its response decreases or increases monotonically with distance from a central point 

named as center of the radial function. These neurons are so called Radial basis activation 

function. The above equation presents the most often used form for such a function. 

 

2( ) exp( )f x x t    (1) 

where, x is the n-dimensional vector of input signal, t is a constant vector in the same 

direction while ║ is Euclidean norm in the n-dimensional space and Practically f(x) shows how 

close vector 'x' is to vector 't' in n-dimensional space. The choice of ║ and t plays a critical role 

in the training algorithm and stability of the Neural Network system. There are no theoretical 
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guidelines found for choosing these constants so they are chosen on heuristic grounds by 

experimental or trial and error techniques. The performance of the Neural Network system is not 

very sensitive to this choice in the convergence region. In (Chiang et al., 2009), the output of a 

RBF network has been written as:  
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HWy .ˆ   (3) 

 

where the weight matrix is represented as W and ║ matrix is represented as H. GD algorithm 

can be implemented to minimize the error after defining the error function: 

 

  2)ˆ( YYE   (4) 

where Y is the desired output. RBF can be optimized with adjusting the weights and center 

vectors by iteratively computing the partials and performing the following updates (Kurban and 

Besdok, 2009): 

Various methods have been used to train RBF networks (Satish, 2005; Kurban and Besdok, 

2009). One approach first uses K-means clustering to find cluster centers which are then used as 

the centers for the RBF functions. However, K-means clustering is a computationally intensive 

procedure, and it often does not generate the optimal number of centers.  

Another approach is to use a random subset of the training points as the centers. Now 

training (Simon, 2002) of the RBFNN in general can be divided into two stages, that is, training 

in the hidden layer followed by training in the output layer. Training in the hidden layer is 

unsupervised and it involves determination of the centers and spread of the Gaussian functions of 

the hidden nodes utilizing an appropriate clustering algorithm. On the other hand, training in the 

output layer uses a supervised method like the Least Mean Square (LMS) algorithm.  

The centers of the Gaussian functions are determined with the K-means clustering algorithm 

and the spreads are calculated using the second order nearest neighbor heuristic. The weights 

between the hidden and output layers are determined by minimizing the square error of the 

network output with the LMS algorithm 

5. Results And Discussion 

 

5.1 Modeling And Simulation 

The lower arm suspension is one of the important parts in the suspension system. A specific 

area of constraint has been set into the design in order to get a precise result. TET10 has been 

used in the finite element modeling using MSC. PATRAN. These analyses were preformed 

iteratively at different mesh global length until the appropriate accuracy obtained.  
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The convergence of the stresses was studied as the mesh global length was refined in the 

analysis. The mesh global length of (0.1-1.5) mm was chosen and the pressure of 8 MPa was 

applied at the end of the bushing that connected to the tire. The other two bushing that connected 

to the body of the car are constraint. The pressure that has been applied is based on (Al-Asady et 

al. 2008). The three-dimensional FE model, loading and constraints of suspension arm is shown 

in Fig.5.  

 

 

 

Fig.5. Three-dimensional FE model, loading and constraints 

5.2 Effects of the Mesh Types 

The stress histories calculated using the linear static analysis method are usually the most 

accurate and are commonly used by members of the finite element community as a reference to 

evaluate the response of RBFNN. The linear static stress analysis was performed utilizing 

MSC.NASTRAN to determine the stresses result from finite element model. The material 

models utilized of elastic and isotropic material. The tetrahedral element TET10 was use for the 

mesh analysis Fig.6. The convergence of the finite element model of the structure was tested for 

TET10 and 5 different mesh sizes. Fig.7 shows the von Mises stress contour for TET10 element. 

The linear elastic analysis results including maximum principal stress, von Mises stress, and 

Tresca stress are tabulated in Table 2. The convergence of the stress was considered as the main 

criteria to select the mesh type. The finite element mesh was generated using TET10 for various 

mesh global length. 

 



Journal of Advanced Science and Engineering Research 1 (2011) 42-52 
 
 
           

49 
 

 

Fig.6. TET10, 54178 elements and 96080 nodes 

 

 

 

Fig.7. Von Mises stresses contour for TET10 

 

It can be seen that the smaller the mesh size capture the higher predicted stresses. It is also 

observed that mesh size of 0.1 mm (54178 elements) has obtained the maximum stresses, which 

is almost flatter in nature. The maximum stress obtained of 50.3, 52.2 and 56.3 MPa for von 

Mises stress, Tresca and Maximum principal stress method respectively. The maximum principal 

stress method occurred through the highest stresses along the global length range.  

The mesh convergence is based on the geometry, model topology and analysis objectives. 

comparison result between FEM and RBFNN techniques based on von Mises, Tresca, and 

maximum principal stresses is tabulated in Table 3 for output (FEM and RBFNN), according to 

the result and comparison between FEM and RBFNN the (ANN) prediction is much less as 
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compared with the FEM; it means RBFNN can often obtain results in almost negligible time as 

compared to similar works using the FE methods. The finite element against corresponding 

RBFNN prediction is shown in Fig.8. 
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Fig.8. FEM and RBFNN Maximum principal stress 

 

 

Finally, it can be concluded from table 3 and Fig.8, that this technique shows the following:  

1. Highly effective (depends upon its accuracy, speed and memory requirements.) in 

identification stress of suspension arm 

2. RBF can be very successively used for the enhanced navigational performance and error 

reduction of the effort and time required determining the stress response of lower 

suspension arm as the FE methods usually deal with only a single problem for each run. 

3. Also the method can solve many problems that have mathematical and time difficulties 

Table 2: Variation of stresses concentration at the critical location of the suspension arm for 

TET10 mesh 

Mesh size 
(mm) 

Total 
nodes 

Total 
Elements 

Von Mises 
(MPa) 

Tresca 
(MPa) 

Max Principal 
Stress (MPa) 

0.1 96080 54178 50.3 52.2 56.3 
0.3 10041 4676 50.2 51.3 54.2 
0.6 5889 2665 48.9 50.6 52.2 
1.0 5436 2465 47.4 48.2 50.7 
1.5 3186 1409 45.3 35.7 49.9 
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Table 3: output from FEM and RBFNN techniques 

  FEM   RBFNN  

Mesh Size 

(mm) 

max. principal 

stree (MPa) 

Tresca 

(MPa) 

Von Mises 

(MPa) 

max. principal 

stree (MPa) 

Tresca 

(MPa) 

Von Mises 

(MPa) 

0.1 56.3 52.2 50.3 55 53 52 

0.3 54.2 51.3 50.2 53 52 51 

0.6 52.2 50.6 48.9 52.5 49 48 

1.0 50.7 48.2 47.4 51 48 47 

1.5 49.9 35.7 45.3 49 36 46 

 

6. Conclusion 

This paper investigated and presented a method which provides a simple way to predicting 

linear response of lower suspension arm, the previous work has been show the efficiency of 

neural networks (NN), coupled with the finite element method (FEM). In this study we provide 

an introduction to Radial Basis Function Neural network. RBFNN have very attractive properties 

such as localization, functional approximation, interpolation, and cluster modeling. These 

properties made it attractive in many applications. We provide some of their properties and few 

training algorithms to evaluate linear response of lower suspension arm. We focus on the issue of 

enhancing reliability of RBFNN. Also the method has been used of more realistic finite element 

problems, computer parallel programming, in order to get quickly solutions and with few 

workload of processing, this technique is quite feasible. 
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