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ABSTRACT 

The description of deformation and the measure of strain are essential parts of nonlinear continuum 

mechanics. In this paper, A new formulation for geometric nonlinear plane stress/strain based on 

Logarithmic strains (GNLGS) is developed. This is based on the well-known Green's strains and 
coupled with modifying a formulation based on geometric strains. A geometric nonlinear total 

lagrangian formulation applied on two-dimensional elasticity using 4-node plane finite elements is 

used. The formulations are implemented into the finite element program (NUSAP), which is 

developed for the analysis of plane stress/strain problems subjected to static loading. The solution of 
nonlinear equations is obtained by the Newton-Raphson method. The program is applied to obtain 

stresses for the different strain measures. Numerical examples are used to compare the different 

stresses obtained. 

 

Key words: Geometric Nonlinear, stress-strain measures, Logarithmic strain 

1. Introduction 

The nonlinearity arises from distinct sources: constitutive nonlinearities and geometric 

nonlinearities. The former occurs when the stress-strain behavior given by the constitutive relation is 

nonlinear, where as the latter is important when changes in geometry, whether large or small, have a 

significant effect on the load deformation behavior. Geometric nonlinearity includes deformation-

dependent boundary conditions and loading. 

Geometric nonlinearities are introduced by nonlinearities in the kinematics description of the 

system at hand. The nonlinear strain and stress measures in definition of stress-strain relation are one 

of the key concepts of several nonlinearities. Strain is known as the change of the shape or geometry 

produced by applied loads. The loads are defined by the general term stress. To practically assess the 

stress state on the structure, strain must be measured. There is alternative strain measures used to 

derive finite element equations, such as Green strain, which is associated with Piola-Kirchoff stress, 

geometric strain, which is associated with engineering stress, and logarithmic strain, which is 

associated with true (Cauchy) stress. The Green strain is the most common definition applied to 

materials used in mechanical and structural engineering problems, which are subjected to small 

deformations. On the other hand, for some materials, subjected to large deformations, the engineering 

definition of strain is not applicable (Rees, 2006). Thus, other more complex definitions of strain are 

required, such as logarithmic strain and Almansi strain. 

mailto:nmakasha@yahoo.com


Journal of Advanced Science and Engineering Research 2 (2012) 68-79 
 
 
           

69 

The geometric (engineering) strain is expressed as the ratio of total deformation to the initial 

dimension of the material body in which the loads are being applied. Logarithmic strain is the 

preferred measure of strain used by scientists, who typically refer to it as the "true strain." For large 

strains, the adopted strain measure is often taken as log-strain, which is of an incremental form. In 

Lagragian geometric nonlinearity the Cauchy stress (True stress) is associated with logarithmic 

strains, the Second Piola-Kirchhoff stress is associated with Green's strain, and not to Cauchy stress as 

was usually assumed (Crisfield, 1997).  

In a finite element context, often adopt an updated coordinate system, but maintain the directions 

of the original rectangular Cartesian system. Thus there will be a need to use a stress measure that 

relates to this new (or current) system. Even if we adopt a Green's strain/second Piola-Kirchhoff 

system we may wish to interpret our final stresses in relation to the final geometry because without 

additional knowledge concerning the deformations, the second Piola–Kirchhoff stresses are difficult 

to interpret. In very simple terms, the Cauchy stress is (force/final area) rather than (force/original 

area) and is related to the current configuration, while the second Piola-Kirchhoff stress relates to the 

original coordinate system configuration. 

Ludwik (1909) proposed the Logarithmic strain measure for the one-dimensional extension of a 

rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective 

specific strain." Hencky (1928) extended Ludwik's measure to three-dimensional analysis by defining 

logarithmic strains for the three principal directions. In their classic treatise in 1960, Truesdell and 

Toupin (1960) pointed out that all applications of Hencky's logarithmic strain measure had had 

difficulties because it was complex to evaluate. 

Consequently, applications were (up to that point in time) limited primarily to studies wherein the 

principal axes of strain did not rotate in the body of the structure. With computers now being readily 

available, this consideration (which was valid in 1960) is no longer a constraint. In their treatise, 

Truesdell and Toupin (1960) went on to say, "Such simplicity for certain problems, as may result 

from a particular strain measure, is bought at the cost of complexity for other problems. In a 

Euclidean space, distances are measured by a quadratic form, and an attempt to elude this fact is 

unlikely to succeed."  

They advocate using the "topological," quadratic strain fields of Almansi (1911) or Green (1841) 

instead of the "physical," logarithmic strain field of Hencky (1928). A thorough and consistent 

development of the strain and strain-rate measures affiliated with Hencky was documented (Freed, 

1995), and natural measures for strain and strain-rate were expressed in terms of the fundamental 

body-metric tensors of Lodge. These strain and strain-rate measures, which are mixed tensor fields, 

were mapped from the body to space in both the Eulerian and Lagrangian configurations and were 

then transformed from general to Cartesian fields. Then, they were compared with the various strain 

and strain rate measures found in the literature. A simple Cartesian description for the Hencky strain 

rate in the Lagrangian state was obtained, but unfortunately, this Cartesian result cannot be integrated 

(a byproduct of non-unique mappings from general to Cartesian space). Nevertheless, this solution 

does point the way to obtaining other integrable solutions appropriate for using the Hencky strain to 

construct constitutive equations. 

These investigator (Green, 1841; Almansi, 1911; Hencky, 1928; Truesdell and Toupin, 1960; 

Freed, 1995) believes that physical, rather than topological, measures of strain, although more 

complex in evaluation, will ultimately lead to much simpler constitutive equations for describing 

material behavior, especially under the conditions of large deformations that are often present during 

material processing. 
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There are many applications of plane stress/strain in different fields of analysis Pidapati et al. 

(1989) used large strain 8-node plane stress isoparametric finite element for prediction of rubber 

fraction. The formulation is based on total Lagrangian description and incremental formulation.  

Seki and.Atluri (1994) used 2D plane stress/strain element in application of analysis of strain 

localization in strain-softening hyper elastic material, using assumed stress hybrid elements. 

Fernando (2006) used an assumed strain approach for a linear triangular element  based on a total 

lagrangian formulation and its geometry  defined by three nodes with only translational degree of 

freedom. The strains are computed from the metric tensor, which is interpolated linearly from the 

values obtained at mid-side points. To deal with plasticity at finite deformation a logarithmic stress-

strain pair is used where an additive decomposition of elastic and plastic strains is adopted. A hyper-

elastic model for the elastic linear stress-strain relation and isotropic quadratic yield function for 

plastic part are considered. The element has been implemented into two finite element codes using 

linear plane stress and nonlinear plane strain problems. 

Turner, et al. (1960) reported the finite element procedure to geometrically nonlinear structure. 

Zienkiwicz (2000) introduced the geometric nonlinear analysis using the total lagragian formulations, 

with incremental procedure combined with Newton-Raphson (NR) iterative techniques. Mohamed 

(1983) used both Green strain and geometric strain measures to solve large rotation beam problems. 

He, also, proposed total lagrangian modified incremental equations for a two- dimensional state of 

stress based on the geometric strains. This has been adopted as the base for developing the 

formulation based on the logarithmic strain. 

In this paper, geometrically nonlinear formulations based on two-dimensional 4-node plane stress 

and plane strain isoparametric finite elements are developed. The nonlinear formulations are based on 

the total Lagrangian formulation and using the Green's strains, Geometric strains and Logarithmic 

strains. The adopted formulations are implemented into a general-purpose nonlinear finite element 

program NUSAP and the stresses values obtained from the different strain measures are compared. 

Numerical examples are used to compare the Piola-kirchoff stresses, the Engineering stresses and the 

“true” Cauchy stresses. 

 

2.  Geometrically Non-linear Finite Element Formulation for Plane Stress/Strain based  on 

Logarithmic Strain 

 

As stated above the geometrically non-linear finite element formulations based on Green's strains 

and Geometric strains are well established. In this section, the formulation based on Logarithmic 

strains is out lined. 

From the principle of virtual work, the equation can be written in terms of the true Cauchy 

stresses as: 

0  fdvB
T  (1) 

 

Where; 
* ,T T T T T TB B S B H S DBa DSBa DSHBa      

In which B  is the Green strain matrix, H  relates variation in geometric strain to variation in 

Green's strain and S  relates variation in logarithmic strain to variation in Geometric strain, then: 

 

 
v

TTT
fdvSHB 0  (2) 

On taking the variation of Eq (2) the results are: 
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   
v v v v
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dvSHBdvSHBdvSHBdvSHB   (3) 
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(4) 

where  
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where xyyx  ,,  are Green strains and 
''' ,, xyyx   are the logarithmic strains.  

 *'
PSHA

TTT   (7) 

 

Where,

T
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
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






 , is the vector containing displacement derivatives w.r.t. Cartesian 

coordinates, and it is related to the nodal displacement by the form: Ga , G  is a matrix 

containing shape function derivatives. Therefore, Eq (7) can written as: 

 

GaPPSHA
TTT **   , where 

*
P  is the initial stress matrix (symmetric matrix), Hence taking 

variation results in: 

 

aGPSHA
TTT  * , therefore: 
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Where; dvGPGK
v

T


*

  is the initial stress stiffness matrix. Also: 
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where  

 T
S  (9) 

which are the true (Cauchy) stresses. In simple form, Eq (9) can be written as  

aBTTH
T  ''   (10) 

 

Where 
'

T  is second initial stress matrix.(symmetric matrix) 

 

aKaBdvTBdvHB
v v

TTT  
*'' 
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
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
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   

 

(11) 

 

Where 
*

K = 
v

T
BdvTB

'
 is additional initial stress stiffness matrix 

Similarly aBMSH
T  *  

 

where 
*

M is the a third initial stress matrix and is given in terms of the initial stresses and strains, 

therefore:  

aKadvBMBdvSHB
v v

TTTT  
*** 













   

 

(12) 

 

where 
**

K  is the second additional initial stress stiffness matrix 

 

From Eqs. (4), (5), (6), (11) and (12) the tangent stiffness matrix due to logarithmic strains can be 

defined by: 

 

  aKaKKKKK TLLo  
****   (13) 

Where 
*

TLK = 
***

 KKKKK Lo   is the tangent stiffness matrix due to logarithmic strains 

Using the residuals , equation (13) is used to obtain the incremental displacements. These are 

then used to obtain the incremental strains and strains in each element. 

 

3.  Numerical Results and Discussion: 

 The finite element formulation described in the above section was implemented in the 

FORTRAN based NUSAP. Two numerical examples of large deformation problems were 
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examined to demonstrate the degree of accuracy that can be obtained by using the 

geometrically non-linear formulations based on 4-node isoperimetric plane stress/strain 

element by using Green's strains, geometric strains and the new formulation, namely 

logarithmic strains. The results of stresses of the different strain measures are obtained and 

compared. 

 

3.1 Cantilever under Pure Bending at Free End: 

A cantilever subjected to pure moment is considered. The cantilever is of dimensions L

=3000mm, D =300mm and thickness t =60mm as shown in Fig.1.  

 

 
Fig.1. Cantilever under pure bending 

 

The numerical values of material property parameters are Young's modulus, E =210 GPa, and 

Poisson’s ratio,  =0.3. The structure is modeled with a mesh of 40-isoparametric elements, and the 

integration order is 2×2. The mesh is of equal size elements of 150 150mm. Results are presented in 

Figs. (2-5) and tables (1) and (2). 

 
 

 
Fig.2. Direct Stress in X-direction, at minimum load=3000N 
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Fig.3. Direct Stress in Y-direction, at minimum load=3000N 

 

 

 
Fig.4. Direct Stress in X-direction, at maximum load=30000N 

 

Table 1: Direct stress in x-direction, at minimum load=3000N 

GAUSS 

POINT GREEN GEOM LOG 

GAUSS 

POINT GREEN GEOM LOG 

1 0.648 0.645 0.644 11 0.467 0.468 0.467 

2 0.623 0.620 0.620 12 0.467 0.468 0.466 

3 0.469 0.470 0.469 13 0.467 0.468 0.467 

4 0.472 0.472 0.471 14 0.467 0.468 0.467 

5 0.472 0.472 0.471 15 0.466 0.468 0.467 

6 0.473 0.473 0.472 16 0.466 0.467 0.466 

7 0.468 0.468 0.467 17 0.465 0.467 0.466 

8 0.468 0.468 0.467 18 0.467 0.468 0.467 

9 0.466 0.467 0.466 19 0.476 0.477 0.475 

10 0.466 0.467 0.466 20 0.470 0.472 0.470 
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Table 2: Direct stress in y-direction, at maximum load=30000N 

GAUSS 

POINT GREEN GEOM LOG 

GAUSS 

POINT GREEN GEOM LOG 

1 1.990 1.930 1.910 11 0.554 2.250 2.990 

2 1.010 1.010 0.927 12 0.792 3.170 4.040 

3 0.045 0.103 0.070 13 1.160 4.490 5.550 

4 0.157 0.192 0.007 14 1.510 5.890 7.110 

5 0.226 0.224 0.012 15 2.050 7.890 9.310 

6 0.156 0.066 0.221 16 2.540 9.850 11.400 

7 0.057 0.137 0.487 17 3.180 12.500 14.300 

8 0.013 0.435 0.854 18 3.760 15.000 17.300 

9 0.162 0.876 1.390 19 5.170 19.700 22.200 

10 0.314 1.440 2.050 20 7.240 25.200 27.500 

 

 
Fig.5. Direct Stress in Y-direction, at maximum load=30000N 

 

Direct stresses obtained in x-and y-directions are shown in Figs. (2).and (3), from which it is 

observed that the stress distributions resulting from applying the lower load of (3000N) are entirely 

the same and identical. When the maximum load (30000N) is applied, the results of direct stresses, as 

depicted in Table (2) show that there is a slight difference in stresses obtained using geometric and 

logarithmic strain while those obtained from  Green's strain give smaller values of stress as shown 

graphically in Figs.(4) and (5). Also the engineering and true stress values increase continuously with 

increase in load. 

3.2 Clamped beam under point force 

A beam with two-fixed ends is considered. The beam is of length L =200mm, height b =10mm and 

thickness 1mm as shown in Fig. 6. The numerical values for material property parameters are Young's 

modulus, E =210GPa, Poisson's ratio, =0.3. The beam is modeled with mesh of 20-elementes, the 

integration order used is 2 2. 

The computed results of the stresses at the centre point A, and at support (point 1) from the three 

formulations are obtained and compared. 
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Fig.6. Clamped beam under point force 

 

This example was analyzed by applying 45 load increments. The results obtained show that at the 

early stages of load, the three formulations curves are coincident then a variation between them is 

observed, and the log-curve resulted in a tendency to give infinite result for maximum load as expected. 

Figs (7 to 9) are plotted as a result to show the relation between load increments and average nodal 

stress at mid span of the beam (point A). 

The relation between the average nodal stress in x-direction and load increments is shown in Fig 

(7). The figure shows that there is a similarity between log and geometric curves, while, a noticeable 

difference is observed between the Green's and the other two curves. Fig (8), which is the relation 

between load increments and average nodal stress in y-direction, shows a slight difference between 

geometric and log strain measures, but the Green's strain measure shows a different trend. This 

indicates that Engineering stress result in good measure of stress, and resembles closely the true 

stress. 

In case of shear stress in xy-direction it is found that, in the early load increments, the values of shear 

stress are zero. Then with the increase in load the log and geometric curves give a continuously 

increasing response, while the Green's curve shows different trend and results in small values of stresses 

as shown in Fig (9). 

 

 
Fig.7. Average nodal stress in x-direction at point A 
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Fig.8. Average nodal stress in y-direction at point A 

 

 
Fig.9. Average nodal stress in xy-direction at point A 

 

For the fixed end of the beam (node1) the results obtained show that there is a difference between 

log and geometric and the maximum values of stresses are shown by the log curve, and the minimum 

values of stresses are represented by the Green's curve as shown graphically in Figs (10 and 11). 

The shear stress in node 1 is different from that in mid span of beam (node A) as shown in Fig.9, 

in that the relation of load increments and shear stress values are nonzero in the early stages of load 

increments as shown in Fig (12). This means that the assumption of zero shear stress at the fixed end 

of beam is not valid in this case. Then for the next stages of the load there is continuous increase and 

the maximum values of shear stress are given by the logarithmic formulation. 
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Fig.10. Average nodal stress in x-direction at point1 

 

 
Fig.11. Average nodal stress in y-direction at point1 

 

 
Fig.12. Average nodal stress in xy-direction at point1 
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4. Conclusions 

a. It is found that, for a clamped beam subjected to central load increments the resulting stresses are 

identical in the early stages of load for the three formulations. Variations occur as load increases 

and the GNLGS tends to give infinite values of stress for maximum load as expected.  

b. It is also found that the assumption of the zero shear stress at fixed end of beam, in the early 

stages of load, is not valid, whereas in the mid span of the beam it is valid. 

c. From all examples carried out in this paper, it is observed that the GNLGS results in high values 

of stress. This observation is mainly due to the fact that the Cauchy stress is (load/final area) 

rather than (load/original area) and is related to the current configuration while the Engineering 

and Piola-Kirchhoff stresses are related to the original configuration.  

d. The logarithmic strain formulation can be used when the true stresses are required. 
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