

Fault Location Estimation on Transmission Lines using Wavelet Transform

A. Y. Abdelaziz, M. A. L. Badr, Mustafa S. Ahmed

Department of Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

almoatazabdelaziz@hotmail.com, sbadr4446@yahoo.com, eng_mustafaelbouseli@yahoo.com Article Info

Received: 1/6/2013 Accepted:11/8/ 2013 Published online: 1/9/2013

ISSN 2231-8844

Abstract

This paper presents an algorithm to determine the fault location on transmission line based on wavelet transformation analysis. The algorithm is developed by analyzing the three phase currents (I_a , I_b and I_c) using Wavelet Transformation, and then start to study the faulted phase(s) at different location (each 5% of the transmission line (TL) length). Fault simulation is carried out by EMTDC/PSCAD program. Two seconds window of waveform covering pre-fault and post-fault is used. The discrete wavelet transforms (DWTs) are used for data pre-processing and these data are used for interpolation to get equation determine fault distance. Four types of mother wavelet are used for signal processing to identify the effective wavelet family that is most suitable to be used in estimating fault location.

Index Terms: Discrete Wavelet Transform, Transmission Line, Fault Location

1. INTRODUCTION

Distance protection is considered as one of most important techniques used to identify the fault location and type of overhead transmission line and underground cables. The concept of conventional distance protection is to measure the variables (voltage & current) of the line or cable, and compare it with the T.L. parameters (impedance) (Peter Rush, Network Protection & Automation Guide, 2002; C. R. Bayliss and B. J. Hardy, 2007). The Artificial Neural Network (ANN) was also used to determine the fault location. ANN is composed of simple elements operating in parallel (Howard Demuth Mark Beale 2000), and the network function is determined largely by the connections between elements. ANN can be trained to perform a particular function by adjusting the values of the connections (weights) between elements. Commonly neural networks are adjusted, or trained, so that a particular input leads to a specific target output (Khorashadi-zadeh, Zuyi Li, 2006; S. Yildirim and Ekici, Mustafa Poyraz 2004; Rao & Deoghare, 2011). Fuzzy logic method was also used to determine the fault location on

transmission lines. The fuzzy logic principle is based on Fuzzification, Inference mechanism, Defuzzification (Tamer S. Kamel M. A. Mustafa Hassan, 2009; Koksal Erenturk, and Ismail H. Altas, 2004). The phasor measurement unit technology is also used for estimation of fault location in transmission lines (Mekhamer, et. al, 2012 and Abdelaziz, et. al, 2013).

The Wavelet Transform provides a time-frequency representation of the signal. It was developed to overcome the short coming of the Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary signals. While STFT gives a constant resolution at all frequencies, the wavelet transform uses multi-resolution technique by which different frequency spectrums are analyzed with different resolutions. Hybrid ANN-Wavelets methods have been recently used in many power systems protection applications, e.g. classification of transient phenomena in power transformers (A. Y. Abdelaziz and Amr M. Ibrahim, 2011) and protection of FACTS compensated transmission lines (Abdelaziz and Ibrahim, 2013).

Recently wavelet transform has been used for estimating fault location effectively (Janicek et al., 2007). The most important characteristic of wavelet transform is to analyze the waveform on time-scale rather than frequency. In this paper, the simulation of single line to ground fault (L-G), double line to ground fault (L-L-G) and three phase fault are preformed. Discrete wavelet transform (DWT) is used to analyze the current waveform to specific certain level of wavelet decomposition for fault at each 5% of T.L length, then the wavelet coefficients are calculated to determine the most appropriate parameter that only change gradually and smoothly with distance only and not change with any other factor (e.g. fault inception angle). Five types of mother wavelets, Haar (db1), Daubechies (db5), Symlets (sym7) and Coiflets (coif5) (S. Yildirim, S. Ekici, 2006) are examined to decide their viability for accurate fault location estimation.

2. DISCRETE WAVELET TRANSFORM

Wavelet Transform are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods in analyzing physical situations where the signal contains discontinuities and sharp spikes. Wavelets were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, and earthquake prediction. This paper introduces wavelets to the electrical power application. In this paper the wavelet which is named Discrete Wavelet Transform (DWT) by two scale factor was used. For any function (f), DWT is written as

$$DWT(m,n) = \frac{1}{\sqrt{2^{m}}} \sum_{k} f(k) \psi \left(\frac{n - k2^{m}}{2^{m}} \right)$$
(1)

Where, Ψ is mother wavelet. The decomposition for three levels (MATLAB R2011b, 2011) are shown Fig. 1.

Fig.1: Three level signal decomposition diagrams

3. Interpolation Techniques

Interpolation is the process of using known data values to estimate unknown data values. Linear interpolation is a simple technique used to estimate unknown values that lie between known values. The concept of linear interpolation relies on the assumption that the rate of change between the known values is constant and can be calculated from these values using a simple slope formula. Then, an unknown value between the two known points can be calculated using one of the points and the rate of change. Linear interpolation is a relatively straight forward method, but is often not sophisticated enough to effectively interpolate station data to an even grid. Linear interpolation is often used to rigid evenly-spaced data, such as longitude / latitude gridded data, to a higher or lower resolution (Y. Prabhaker Reddy)

If the two known points are given by the coordinates (xo, yo) and (x1, y1), the linear interpolate is the straight line between these points. For a value x in the interval (xo, yo), the value y along the straight line is given from the equation

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0} \tag{2}$$

Solving this equation for y, which is the unknown value at x, gives

$$y = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0}$$
(3)

Linear interpolation is often used to approximate a value of some function (f) using two known values of that function at other points. The error of this approximation is defined as

$$R_t = f(x) - p(x) \tag{4}$$

Where p denotes the linear interpolation polynomial defined above

$$p(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
(5)

4. System under Study

This paper presents an analysis for three types of faults which are the most commonly occurring, Line to ground fault (about 70% of faults), Line to line to ground fault (about 25% of faults), 3-phase fault (about 5% of faults) (Lucas, 2005). By this purpose, a 300 km T.L

length, 500 kV, 100 MW power transmitted, +sequence R= 0.041e-3 [ohm/m], +sequence X_i =0.528e-3 [ohm/m], +sequence X_c =127.23[Mohm*m], zero sequence R=0.449e-3[ohm/m], zero sequence X_i =2.02e-3 [ohm/m], zero sequence X_c =235.3 [Mohm*m] has been simulated using PSCAD/EMTDC program. The current waveforms which are obtained from the receiving end of power system and have been abstracted for further analysis. These signals are then used in DWT using a sampling frequency of 800 Hz. Five types of mother wavelets are used [(db1), (db5), (sym7) and (coif5)] for fault location estimation. The flow chart of the developed algorithm for estimation of the fault location is shown in Fig. 2.

Fig. 2: Algorithm of the fault distance estimation.

The wavelet coefficients analyses for the faulted and healthy phase(s) current, for example at 15% of T.L. length are shown in Figs 3-6.

Fig. 3: Wavelet coefficient at level 6 for db1 family faulted and healthy case at 15 % T.L. length

Fig. 4: Wavelet coefficient at level 6 for db5 family faulted and healthy case at 15 % T.L. length

Fig. 5: Wavelet coefficient at level 6 for sym7 family faulted and healthy case at 15 % T.L. length

Fig. 6: Wavelet coefficient at level 6 for coif5 family faulted and healthy case at 15 % T.L. length

5. Simulation Results

5.1 Line to ground fault

The simulation for a single line to ground fault is shown in Fig. 7

Fig.7. Line to ground fault simulation

The currents (Ia, Ib, Ic) are recorded as shown in Fig. 8, then they are arranged in numerical form. The simulation was carried out every 5% of T.L. The data of faulted phase is analyzed using Haar (db1), Daubechies (db5), Symlets (sym7) and Coiflets (coif5).

Fig. 8: (Ia, Ib, Ic) at 5% of T.L. length for line to ground fault (Ia faulted phase) in p.u system

5.1.1 Haar (db1) family

The analysis of fault type using Haar (db1) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^2) + a2*exp(-((x-b2)/c2).^2) + a3*exp(-((x-b3)/c3).^2) + a4*exp(-((x-b4)/c4).^2) + a5*exp(-((x-b5)/c5).^2)+0.121$ (6)
where

x = MIN wavelet coefficient at level 6 db1, a1 = 6.321; b1 = -6.447; c1 = 1.158; a2 = 555.5; b2

= 18.61; c2 = 15.08; a3 = 1.16; b3 = -41.8; c3 = 16.28; a4 = 3.321; b4 = -27.94; c4 = 47.87; a5

= 6.778e+005 ;b5 = 284.6 ; c5 = 96.77

The results are shown in Table 1.

Actual	MIN wavelet	Estimated	orror	Actual	MIN wavelet	Estimated	
Distance	coefficient at	Distance	0/	Distan	coefficient at	Distance	error %
(%)	level 6 db1	D(MIN)%	70	ce (%)	level 6 db1	D(MIN)%	
5	-58.452	5.103	0.103	55	-14.709	54.948	-0.052
10	-45.483	10.127	0.127	60	-13.601	59.953	-0.047
15	-37.192	15.076	0.076	65	-12.628	64.967	-0.033
20	-31.428	20.028	0.028	70	-11.763	69.982	-0.018
25	-27.183	25.046	0.046	75	-10.990	74.986	-0.014
30	-23.920	30.066	0.066	80	-10.292	79.971	-0.029
35	-21.330	35.057	0.057	85	-9.659	84.931	-0.069
40	-19.221	40.025	0.025	90	-9.080	89.885	-0.115
45	-17.467	44.987	-0.013	95	-8.548	94.966	-0.034
50	-15.983	49.959	-0.041	100	-8.101	99.973	-0.027

Table 1 Results of db1 family (LG)

The standard deviation Sn $_{(LG-db1)} = 0.062$.

5.1.2 Daubechies (db5) family

The analysis of fault location using Daubechies (db5) family

Using the interpolation, the estimated distance can be calculated as: $D\% = a1^{exp(-((x-b1)/c1).^2)} + a2^{exp(-((x-b2)/c2).^2)} + a3^{exp(-((x-b3)/c3).^2)} + a4^{exp(-((x-b4)/c4).^2)} + a5^{exp(-((x-b5)/c5).^2)+0.015}$ (7) where x= MIN wavelet coefficient at level 6 db5, a1 = 5.525e+013; b1 = 37.22; c1 =8.692; a2 = 114.3; b2 = 20.47; c2=30.83; a3= 0; b3 = -37.04; c3 = 0.3342; a4 = 176.7; b4 = 11.97; c4 = 15.84; a5 = 87.46; b5 = 59.82; c5 = 85.34;

The results are shown in Table 2

Actual Distance (%)	MIN wavelet coefficient at level 6 db5	Estimated Distance D(MIN)%	error %	Actual Distance (%)	MIN wavelet coefficient at level 6 db5	Estimated Distance D(MIN)%	error %
5	-84.523	5.021	0.021	55	-21.585	54.988	-0.012
10	-66.044	9.993	-0.007	60	-19.970	59.988	-0.012
15	-54.150	15.038	0.038	65	-18.550	64.995	-0.005
20	-45.845	20.014	0.014	70	-17.289	70.004	0.004
25	-39.707	24.995	-0.005	75	-16.160	75.007	0.007
30	-34.980	30.003	0.003	80	-15.141	79.996	-0.004
35	-31.221	35.018	0.018	85	-14.217	84.973	-0.027
40	-28.155	40.021	0.021	90	-13.372	89.958	-0.042
45	-25.603	45.012	0.012	95	-12.595	95.013	0.013
50	-23.442	49.998	-0.002	100	-11.918	99.973	-0.027

Table 2 Results of db5 family (LG)

The standard deviation $Sn_{(LG-db5)} = 0.019$.

5.1.3 Symlet (sym7) family

The analysis of fault location using Symlet (sym7) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^2) + a2*exp(-((x-b2)/c2).^2) + a3*exp(-((x-b3)/c3).^2) + a4*exp(-((x-b4)/c4).^2) + a5*exp(-((x-b5)/c5).^2)+0.0015$ (8)
where

x= MIN wavelet coefficient at level 6 sym7, a1=20.92; b1=-4.212; c1=7.978; a2=3.06e+014; b2=50.6; c2 = 10.72; a3 = 181.9; b3= 82.98; c3 = 81.85; a4 = 0; b4 = 187.8; c4 = 30.44; a5 = 112.3; b5 = 14.72; c5 = 23.66;

The results are shown in Table 3

Actual	MIN wavelet	Estimated	orror	Actual	MIN wavelet	Estimated	
Distance	coefficient at	Distance		Distance	coefficient at	Distance	error %
(%)	level 6 sym7	D(MIN)%	70	(%)	level 6 sym7	D(MIN)%	
5	-72.113	5.020	0.020	55	-18.684	54.969	-0.031
10	-56.580	9.950	-0.050	60	-17.294	59.973	-0.027
15	-46.513	15.027	0.027	65	-16.072	64.998	-0.002
20	-39.451	20.010	0.010	70	-14.986	70.025	0.025
25	-34.217	24.971	-0.029	75	-14.014	75.031	0.031
30	-30.175	29.971	-0.029	80	-13.137	80.002	0.002
35	-26.956	34.999	-0.001	85	-12.341	84.952	-0.048
40	-24.328	40.019	0.019	90	-11.613	89.946	-0.054
45	-22.137	45.012	0.012	95	-10.945	95.115	0.115
50	-20.280	49,987	-0.013	100	-10.400	99,988	-0.012

Table 3 Results of (Sym7) family (LG)

The standard deviation Sn (LG-sym7) = 0.0373.

5.1.4 Coiflets (coif5) family

The analysis of fault location using Coiflets (coif5) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^{2}) + a2*exp(-((x-b2)/c2).^{2}) + a3*exp(-((x-b3)/c3).^{2}) + a4*exp(-(x-b3)/c3).^{2}) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)/c3).^{2}) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-$

 $((x-b4)/c4).^{2} + a5*exp(-((x-b5)/c5).^{2})-0.001$ (9) where

x= MIN wavelet coefficient at level 6 coif5, a1 = 2.209e+014; b1 = -0.776; c1 = 0.1512; a2 = 11.19; b2 = -1.42; c2 = 0.43; a3 =0.4557; b3 = -2.045; c3 = 0.1722; a4 = 37.42; b4 = -0.8404; c4 = 1.538; a5 = 0; b5 = -2.892; c5 = 0.01074; a6 = 78.39; b6 = 1.499; c6 = 5.52

The results are shown in Table 4

Actual Distance (%)	MIN wavelet coefficient @ level 6 coif 5	Estimated Distance D(MIN)%	error %	Actual Distance (%)	MIN wavelet coefficient @ level 6 coif 5	Estimated Distance D(MIN)%	error %
5	-7.533	5.387	0.387	55	-2.606	55.097	0.097
10	-6.481	9.693	-0.307	60	-2.433	60.026	0.026
15	-5.625	14.818	-0.182	65	-2.280	64.902	-0.098
20	-4.947	20.072	0.072	70	-2.143	69.963	-0.037
25	-4.404	25.149	0.149	75	-2.020	75.028	0.028
30	-3.962	30.056	0.056	80	-1.908	79.970	-0.030
35	-3.597	34.931	-0.069	85	-1.807	85.008	0.008
40	-3.290	39.887	-0.113	90	-1.714	89.961	-0.039
45	-3.028	44.945	-0.055	95	-1.629	97.531	2.531
50	-2.803	50.046	0.046	100	-1.629	97.539	-2.461

Table 4 Results of (coif5) family (LG)

The standard deviation Sn (LG-coif5) = 0.800625.

5.2 Line to line fault

The simulation for a line to line fault is shown in Fig. 9.

Fig. 9: Line to line to ground fault simulation

The currents (Ia, Ib, Ic) are recorded as shown in Fig. 10, then they are arranged in numerical form. The simulation was carried out every 5% of T.L. The data of faulted phase is analyzed using Haar (db1), Daubechies (db5), Symlets (sym7) and Coiflets (coif5).

Fig.10: (Ia, Ib, Ic) at 5% of T.L. length for line to line to ground fault (Ia, Ib faulted phase) in p.u. system

5.2.1 Haar (db1) family

The analysis of fault type using Haar (db1) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^2) + a2*exp(-((x-b2)/c2).^2) + a3*exp(-((x-b3)/c3).^2) + a4*exp(-((x-b4)/c4).^2) + a5*exp(-((x-b5)/c5).^2) + a6*exp(-((x-b6)/c6).^2) - 0.031$ (10) where

x = MIN wavelet coefficient at level 6 db1, a1 =0; a5 = 69.4; b1 = 2.076; b5 = 9.397; c1 = 0.03681; c5 = 21.62; a2 = -4711; a6 = 0; b2 = 14.83; b6 = -3.279; c2 = 11.5; c6 = 2.22e-014; a3 = 2.872e+004; b3 = 25.67; c3 = 14.39; a4 = 47.03; b4 = 19.66; c4 = 52.16 The results are shown in Table 5.

			Tuble 5 Re	Suits of doi 1	anniy (LEO)		
Actual	MIN wavelet	Estimated		Actual	MIN wavelet	Estimated	
Distance	coefficient at	Distance	error %	Distance	coefficient at	Distance	error %
(%)	level 6 db1	D(MIN)%		(%)	level 6 db1	D(MIN)%	
5	-58.453	5.03	0.028	55	-14.709	55.02	0.021
10	-45.484	10.03	0.026	60	-13.602	60.03	0.027
15	-37.193	15.03	0.034	65	-12.628	65.02	0.024
20	-31.429	20.02	0.016	70	-11.764	70.01	0.009
25	-27.183	25.02	0.021	75	-10.990	74.98	-0.016
30	-23.921	30.03	0.031	80	-10.293	79.96	-0.044
35	-21.331	35.03	0.027	85	-9.659	84.94	-0.063
40	-19.222	40.02	0.016	90	-9.080	89.94	-0.059
45	-17.468	45.01	0.009	95	-8.548	94.98	-0.016
50	-15.984	50.01	0.012	100	-8.074	99.90	-0.102

Table 5 Results of db1 family (LLG)

The standard deviation $Sn_{(L-L-G-db1)} = 0.037$.

5.2.2 Daubechies (db5) family

The analysis of fault location using Daubechies (db5) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^{2}) + a2*exp(-((x-b2)/c2).^{2}) + a3*exp(-((x-b3)/c3).^{2}) + a4*exp(-((x-b4)/c4).^{2}) + a5*exp(-((x-b5)/c5).^{2})+0.015$ (11)
Where

x= MIN wavelet coefficient @ level 6 db5, a1 = 5.525e+013; b1 = 37.22; c1 = 8.692; a2 = 114.3; b2 = 20.47; c2 = 30.83; a3 = 0; b3 = -37.04; c3 = 0.3342; a4 = 176.7; b4 = 11.97; c4 = 15.84; a5 = 87.46; b5 = 59.82; c5 = 85.34;

The results are shown in Table 6

	Table 6 db5 family (LLG)										
Distance (%)	MIN wavelet coefficient at level 6 db5	Estimated Distance D(MIN)%	error %	Distance (%)	MIN wavelet coefficient at level 6 db5	Estimated Distance D(MIN)%	error %				
5	-84.523	5.021	-0.021	55	-21.585	54.988	0.012				
10	-66.044	9.993	0.007	60	-19.970	59.988	0.012				
15	-54.150	15.038	-0.038	65	-18.550	64.995	0.005				
20	-45.845	20.014	-0.014	70	-17.289	70.004	-0.004				
25	-39.707	24.995	0.005	75	-16.160	75.007	-0.007				
30	-34.980	30.003	-0.003	80	-15.141	79.996	0.004				
35	-31.221	35.018	-0.018	85	-14.217	84.973	0.027				
40	-28.155	40.021	-0.021	90	-13.372	89.958	0.042				
45	-25.603	45.012	-0.012	95	-12.595	95.013	-0.013				
50	-23.442	49.998	0.002	100	-11.919	99.973	0.027				

The standard deviation $\text{Sn}_{(L-L-G-db5)} = 0.019$.

5.2.3 Symlet (sym7) family

The analysis of fault location using Symlet (sym7) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1^{*}exp(-((x-b1)/c1).^{2}) + a2^{*}exp(-((x-b2)/c2).^{2}) + a3^{*}exp(-((x-b3)/c3).^{2}) + a4^{*}exp(-((x-b4)/c4).^{2})-0)-0.017$ (12)

where

X = MIN wavelet coefficient at level 6 sym7, a1=3.533e+013; b1=9.676; c1=3.585; a2=308.2; b2=15.51; c2=15.6; a3=-7.895; b3=-18.27; c3=24.29; a4 =3.701e+006; b4= 481; c4= 150.5 The results are shown in Table7.

			Table 7 S	ym7 family (l	LLG)		
Distance (%)	MIN wavelet coefficient at level 6 sym7	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 sym7	result D(MIN)	error %
5	-72.113	4.964	0.036	55	-18.684	54.994	0.006
10	-56.580	9.973	0.027	60	-17.294	59.993	0.007
15	-46.513	15.032	-0.032	65	-16.072	65.001	-0.001
20	-39.451	19.990	0.010	70	-14.986	70.013	-0.013
25	-34.216	24.968	0.032	75	-14.014	75.022	-0.022
30	-30.175	29.986	0.014	80	-13.137	80.022	-0.022
35	-26.956	35.011	-0.011	85	-12.341	85.004	-0.004
40	-24.328	40.021	-0.021	90	-11.613	89.974	0.026
45	-22.137	45.016	-0.016	95	-10.945	95.027	-0.027
50	-20.280	50.004	-0.004	100	-10.401	99.996	0.004

The standard deviation Sn_(L-L-G-sym7)=0. 0198.

5.2.4 Coiflets (coif 5) family

The analysis of fault location using Coiflets (coif5) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^{2}) + a2*exp(-((x-b2)/c2).^{2}) + a3*exp(-((x-b3)/c3).^{2}) + a4*exp(-((x-b4)/c4).^{2}) + a5*exp(-((x-b5)/c5).^{2}) + a6*exp(-((x-b6)/c6).^{2}) + 0.073$ (13) Where

X= MIN wavelet coefficient @ level 6 coif5, a1=11.98; b1= -6.27; c1= 2.324; a2 = -8.26; b2 = -6.347; c2 = 1.52; a3 =1.367e+015; b3 =135.5; c3 =25.03; a4 = -2.315; b4 = -7.72; c4 = 0.6796; a5 = 41.72; b5 = 2.703; c5 = 14.66; a6 = 42.48; b6 = 42.89; c6 = 69.99

The results are shown in Table 8.

Table 8 Coif5 family (LLG)											
Distance (%)	MIN wavelet coefficient at level 6 coif5	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 coif5	result D(MIN)	error %				
5	-63.559	4.276	0.724	55	-8.828	54.940	0.060				
10	-40.329	10.413	-0.413	60	-7.850	60.022	-0.022				
15	-29.045	15.227	-0.227	65	-7.239	64.931	0.069				
20	-22.555	19.943	0.057	70	-6.691	70.160	-0.160				
25	-18.551	24.876	0.124	75	-6.251	74.575	0.425				
30	-15.586	30.211	-0.211	80	-5.801	80.029	-0.029				
35	-13.459	35.231	-0.231	85	-5.370	86.086	-1.086				
40	-11.822	40.031	-0.031	90	-5.215	88.411	1.589				
45	-10.557	44.812	0.188	95	-4.786	95.149	-0.149				
50	-9.532	50.256	-0.256	100	-4.511	99.726	0.274				

The standard deviation Sn_(L-L-G-coif5)=0. 112.

5.3 3-phase fault

The simulation for a 3-phase fault is shown in Fig. 11.

Fig. 11: 3-phase fault simulation

The currents (Ia, Ib, Ic) are recorded as shown in Fig. 12, then they are arranged in numerical form. The simulation was carried out every 5% of T.L. The data of faulted phase is analyzed using Haar (db1), Daubechies (db5), Symlets (sym7) and Coiflets (coif5).

5.3.1 Haar family

The analysis of fault type using Haar (db1) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1^{*}exp(-((x-b1)/c1).^{2}) + a2^{*}exp(-((x-b2)/c2).^{2}) + a3^{*}exp(-((x-b3)/c3).^{2}) + a4^{*}exp(-((x-b4)/c4).^{2}) + a5^{*}exp(-((x-b5)/c5).^{2}) + a6^{*}exp(-((x-b6)/c6).^{2}) - 0.031$ (14) Where

X= MIN wavelet coefficient at level 6 db1, a1 = 0; a5 = 69.4; b1 = 2.076; b5 = 9.397; c1 = 0.0368; c5 = 21.62; a2 = -4711; a6 = 0; b2 = 14.83; b6 = -3.279; c2 = 11.5; c6 = 2.22e-014; a3 = 2.872e+004; b3 = 25.67; c3 = 14.39; a4 = 47.03; b4 = 19.66; c4 = 52.16

The results are shown in Table 9.

	Table 9 db1 family (3-phase fault)										
Distance (%)	MIN wavelet coefficient at level 6 db1	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 db1	result D(MIN)	error %				
5	-58.453	5.03	0.028	55	-14.709	55.02	0.021				
10	-45.484	10.03	0.026	60	-13.602	60.03	0.027				
15	-37.193	15.03	0.034	65	-12.628	65.02	0.024				
20	-31.429	20.02	0.016	70	-11.764	70.01	0.009				
25	-27.183	25.02	0.021	75	-10.990	74.98	-0.016				
30	-23.921	30.03	0.031	80	-10.293	79.96	-0.044				
35	-21.331	35.03	0.027	85	-9.659	84.94	-0.063				
40	-19.222	40.02	0.016	90	-9.080	89.94	-0.059				
45	-17.468	45.01	0.009	95	-8.548	94.98	-0.016				
50	-15.984	50.01	0.012	100	-8.074	99.90	-0.102				

The standard deviation $\text{Sn}_{(3-\text{phase-db1})} = 0.037$.

5.3.2 Daubechies (db5) family

The analysis of fault location using Daubechies (db5) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^{2}) + a2*exp(-((x-b2)/c2).^{2}) + a3*exp(-((x-b3)/c3).^{2}) + a4*exp(-(x-b3)/c3).^{2}) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)/c3) + a4*exp(-(x-b3)$

 $((x-b4)/c4).^{2} + a5*exp(-((x-b5)/c5).^{2}) + a6*exp(-((x-b6)/c6).^{2})-0.086$ (15) where

X = MIN wavelet coefficient at level 6 db5, a1 =7e+013; a5 = 402.2; b1= 231.1; b5=150.5; c1=44.24; c5 = 112.5; a2 = -11.98; a6=559.8; b2=-115.2; b6=52.85; c2=14.59; c6= 38.57; a3=-0.01396; b3=-18.73; c3 =1.559; a4=1.435e+010; b4=247; c4 =56.49

The results are shown in Table 10.

Distance (%)	MIN wavelet coefficient at level 6 db5	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 db5	result D(MIN)	error %
5	-84.516	5.06	0.063	55	-21.585	55.00	0.001
10	-66.040	10.02	0.024	60	-19.970	59.99	-0.007
15	-54.148	15.05	0.047	65	-18.550	64.98	-0.020
20	-45.843	20.04	0.044	70	-17.288	69.98	-0.021
25	-39.706	25.02	0.017	75	-16.160	74.98	-0.024
30	-34.979	29.99	-0.008	80	-15.141	79.97	-0.027
35	-31.220	34.98	-0.019	85	-14.216	84.98	-0.023
40	-28.155	39.98	-0.017	90	-13.371	89.99	-0.006
45	-25.603	44.99	-0.010	95	-12.595	95.03	0.028
50	-23.442	50.00	-0.002	100	-11.893	99.97	-0.030

Table 10 db5 family (3-phase fault)

The standard deviation $Sn_{(3-phase-db5)} = 0.027$.

5.3.3 Symlet (sym7) family

The analysis of fault location using Symlet (sym7) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^2) + a2*exp(-((x-b2)/c2).^2) + a3*exp(-((x-b3)/c3).^2) + a4*exp(-((x-b4)/c4).^2) + a5*exp(-((x-b5)/c5).^2) + a6*exp(-((x-b6)/c6).^2)-0.017$ (16) where

X = MIN wavelet coefficient at level 6 sym7, a1=170.9; b1=6.858; c1=1.377; a2=1368; b2=148.2; c2=93.2; a3=2.698; b3=-7.859; c3=12.24; a4=3932; b4=39.06; c4=22.08; a5=-5.999; b5=-22.14; c5=25.5; a6=-0.004347; b6=-13.93; c6=1.948The results are shown in Table 11.

The results are shown in Table 11.

			Table 11 s	ym7 family (3phase)		
Distance (%)	MIN wavelet coefficient at level 6 sym7	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 sym7	result D(MIN)	error %
5	-84.516	5.01	0.011	55	-21.585	54.99	-0.009
10	-66.040	10.00	0.001	60	-19.970	59.99	-0.006
15	-54.148	15.01	0.011	65	-18.550	65.00	-0.003
20	-45.843	19.99	-0.008	70	-17.288	70.00	-0.001
25	-39.706	24.99	-0.011	75	-16.160	75.00	0.003
30	-34.979	29.99	-0.008	80	-15.141	80.01	0.006
35	-31.220	34.99	-0.008	85	-14.216	85.01	0.008
40	-28.155	39.99	-0.009	90	-13.371	90.01	0.007
45	-25.603	44.99	-0.010	95	-12.595	95.02	0.023
50	-23.442	49.99	-0.011	100	-11.893	100.02	0.020

The standard deviation $Sn_{(3-\text{phase-sym7})} = 0.010$.

5.3.4 Coiflets family

The analysis of fault location using Coiflets (coif5) family

Using the interpolation, the estimated distance can be calculated as:

 $D\% = a1*exp(-((x-b1)/c1).^{2}) + a2*exp(-((x-b2)/c2).^{2}) + a3*exp(-((x-b3)/c3).^{2}) + a4*exp(-((x-b4)/c4).^{2})+0.014$ (17)

where

X = MIN wavelet coefficient at level 6 coif5, a1=27.41; b1=-0.1792; c1=6.479; a2=0.1046; b2=-10.97; c2=1.017; a3=34.4; b3=14.39; c3=48.78; a4=1.69e+015; b4=486.6; c4=88.79The results are shown in Table 12.

			14010 12 0011	family (Spila	130)		
Distance (%)	MIN wavelet coefficient at level 6 coif 5	result D(MIN)	error %	Distance (%)	MIN wavelet coefficient at level 6 coif 5	result D(MIN)	error %
5	-53.921	4.962	-0.038	55	-13.162	54.930	-0.070
10	-41.602	9.920	-0.080	60	-12.157	59.933	-0.067
15	-33.832	14.961	-0.039	65	-11.275	65.008	0.008
20	-28.478	19.976	-0.024	70	-10.492	70.029	0.029
25	-24.559	24.997	-0.003	75	-9.792	75.021	0.021
30	-21.562	30.029	0.029	80	-9.161	80.043	0.043
35	-19.191	35.054	0.054	85	-8.589	85.064	0.064
40	-17.265	40.052	0.052	90	-8.065	90.048	0.048
45	-15.668	45.021	0.021	95	-7.584	94.976	-0.024
50	-14.319	49,973	-0.027	100	-7.125	100.001	0.001

Table 12 coif 5 family (3phase)

The standard deviation $Sn_{(3-\text{phase-coif}5)} = 0.0096$.

6. Discussion

The standard deviations of the different fault types and different wavelet families are shown in Table 13. The weighted average of Sn is calculated as in the equation in the flow chart, based on the fact that probability of fault types are 70% for LG faults, 25% for LLG faults and 5% for 3-phase faults. It can be seen from Table 13 that the Daubechies family db5 has the best performance in the estimation of fault location.

	L-G fault	L-L fault	3 phase fault	Weighted average
db1 (haar)	0.062	0.062	0.037	0.0608
db5	0.019	0.019	0.027	0.0194
Symlet	0.0373	0.02	0.01	0.0316
Coiflet	0.8006	0.112	0.0096	0.5889

Table 13 Standard deviation of different fault types and different wavelet families

7. Conclusion

The simulation of a 500 kV transmission line was performed using EMTDC/PSCAD with considering different fault locations on transmission line. The waveforms obtained from EMTDC/PSCAD have been converted as a MATLAB file for feature extraction. This feature vector has been used for interpolation and testing the equation to detect fault location precisely. Four different types of mother wavelets have been tried to choose the most suitable one. It is found that better results are obtained using Daubechies 'db5' wavelet. The Daubechies family is

the most effective family that can determine the location of fault, in spite of the Symlet family is more effective than Daubechies family at 3-phase fault analysis, but in general the 3-phase faults are rare to occur if it is compared with the line to ground fault. Therefore, the Daubechies family is accepted to be the better family for fault location estimation. The proposed method has provided a great accuracy to be used in transmission line fault location estimation.

References

- Abdelaziz A. Y. and Ibrahim Amr M., (2011), Classification of Transient Phenomena in Power Transformers Based on a Wavelet-ANN Approach, The Online Journal on Electronics and Electrical Engineering, Vol. 3, No. 4, October 2011, pp. 462-467.
- Abdelaziz A. Y. and Ibrahim Amr M., (2013), A Hybrid Wavelet-ANN-Based Protection Scheme for FACTS Compensated Transmission Lines, International Journal of Intelligent Systems and Applications (IJISA), Vol. 5, No. 7, June 2013, pp. 23-31.
- Abdelaziz A. Y., Mekhamer S. F. and Ezzat M., (2013), Fault Location of Uncompensated/Series Compensated Lines Using Two-Ends Synchronized Measurements, Electric Power Components and Systems, Vol. 41, Issue 7, May 2013, pp. 693-715.
- Bayliss C. R. and Hardy B. J., (2007), Transmission and Distribution Electrical Engineering, Third edition.
- Frantisek Janicek, Martin Mucha and Marian Ostrozlik, A New Protection Relay Based on Fault Transient Analysis using Wavelet Transform, Journal of Electrical Engineering, Vol. 58, No. 5.
- Hassan Khorashadi-Zadeh and Zuyi Li, (2006) An ANN Based Approach to Improve the Distance Relaying Algorithm, Turk J Elec. Engineering, Vol. 14, No. 2.
- Howard Demuth Mark Beale, 2000, Neural Network Toolbox, The Math Works, Version 4.
- Koksal Erenturk and Ismail H. Altas, Fault Identification in a Radial Power System using Fuzzy Logic, Instrumentation Science and Technology, Vol. 32, No. 6, pp. 641–653, 2004.
- Lucas J. R. (2005), Power System Analysis, Faults, October,
- MATLAB R2011b, the Math Works, Inc..
- Mekhamer S. F., Abdelaziz A. Y. and Ezzat M.,(2012), Fault Location in Long Transmission Lines Using Synchronized Phasor Measurements from Both Ends, Electric Power Components and Systems Journal, Vol. 40, Issue 7, May 2012, pp. 759-776.
- Michael Fryer, Data Analysis Using Wavelets, Idaho National Engineering and Environmental Laboratory, Lockheed Martin Idaho Technologies, 1997.
- Mrunalini M. Rao and P. M. Deoghare, (2011), A Novel Approach for Transmission Line Protection Using Wavelet Transform and Neural Network, International Journal of Instrumentation, Control and Automation (IJICA), Vol. 1, Issue 2.
- Peter Rush, (2002), Network Protection & Automation Guide, 1st edition,.
- Prabhaker Reddy Y., Mathematical Methods Interpolation, Guru Nanak Engineering College, Ibrahimpatnam, Hyderabad.
- Robi Polikar, (1996), The Wavelet Tutorial, Rowan University, College of Engineering.

- Tamer S. Kamel M. A. Moustafa Hassan, Adaptive Neuro Fuzzy Inference System (ANFIS) For Fault Classification in the Transmission Lines, The Online Journal on Electronics and Electrical Engineering (OJEEE), Vol. 2, No. 1, 2009.
- Yildirim S. and Ekici S., (2006), Fault Location Estimation on Transmission Lines using Wavelet Transform and Artificial Neural Network, 2006 International Conference on Artificial Intelligence, ICAI 2006, Las Vegas, Nevada, USA, June 26-29, 2006.
- Yildirim S. and Ekici S., Mustafa Poyraz, (2004), A Neural Network Based Approach for Transmission Line Faults, Firat University, Faculty of Technical Education, Department of Electrical Education, Elazığ, Turkey.