

THE DIRECTIONS OF CAUSALITY BETWEEN THE VOLUNTARY DISCLOSURE AND COMPANY PERFORMANCES AMONG LISTED JORDANIAN COMPANIES.

Amer Alhazaimeh¹, Ravindran Palaniappan²,

Mahmoud Almsafir³

a Graduate Basiness School,College of Graduate Studies , Tenaga National University, Jalan IKRAM-UNITEN,43000 Kajang, Selangor,Malaysia Amermo10@yahoo.com

Article Info

Received:25.07.2014 Accepted:16.08.2014 Published online:01.09.2014

ISSN: 2231-8275

ABSTRACT

Over the last two decades, there has been globally much attention towards voluntary disclosure initiatives arising mainly due to unrelenting needs expressed by various stakeholders to be more informed of corporations. Mandatory corporate disclosure alone seems inadequate. Therefore, the study aims to evaluate the causality directions between the extent of voluntary disclosure and corporate performance amongst listed Jordanian companies at Amman Stock Exchange (ASE) for the period 2002-2011. The measurement of voluntary disclosure is based on the checklist which was selection from previous studies then refined the checklist to ensure its validity from experienced Jordanian accountants from Amman Stock Exchange (ASE). Additionally, using Granger tests in studying causality between voluntary disclosures and corporate performance, empirical results indicate that there are 26 companies having unidirectional causality, 45 companies having no directional causality and one company having bidirectional causality. This study argued that the quality of voluntary disclosure is also highly correlated with firm performance. Hence, high degree of transparency and quality of disclosure should enable sound governance and improve firm performance. Otherwise, low voluntary disclosure increases the market's difficulty in predicting firm performance.

Keywords: voluntary disclosure, corporate performance, causality directions, Amman Stock Exchange.

1. Introduction

Voluntary disclosure is deemed very important for all stakeholders; it provides them with the necessary information to reduce uncertainty and helps them to make suitable economic financial decisions (Cooke, 1989). The transparency arising from voluntary disclosure of corporate is vital for economic stability and the promotion of sustained levels of high quality

investment by corporations. This is achieved through the preparation of annual financial reports which are published by companies and are considered one of the most important sources of information to outsiders (Betosan, 1997; Lang and Lundholm, 1993). Annual reports are used as a tool to communicate both quantitative and qualitative corporate information with stakeholders or with other interested parties (Barko, Hancock and Izan, 2006). In addition, Mitton (2002) further argued that the quality of voluntary disclosure is also highly correlated with firm performance. Hence, high degree of transparency and quality of disclosure should enable sound governance and improve firm performance. Otherwise, low voluntary disclosure increases the market's difficulty in predicting firm performance (Chang, Cho and Shin, 2007). The relationship between the corporate performance and the extent of voluntary disclosure in the annual reports has been tested by various prior studies (e.g. Wallace and Naser, 1996; Ahmed and Courtis, 1999; Haniffa and Cook, 2002; Camfferman and Cooke, 2002; Chau and Gray, 2002; Akhtaruddin, 2005; Barako et al, 2006; Adelopo, 2011). However, the empirical evidence of such studies was mixed. For instance, there was a positively significant relationship between corporate performance and the extent of voluntary disclosure (e.g. Wallace and Naser, 1996; Haniffa and Cook, 2002; Camfferman and Cooke, 2002; Chau and Gray; 2002; Adelopo, 2011). In contrast, some studies found the relationship not to be statistically significant (e.g. Ahmed and Courtis, 1999; Akhtaruddin, 2005; Barako et al., 2006). Despite the evidence of mixed results, it is possible to find directions causality between the extent of voluntary disclosure and corporate performance. This directions causality can be explained by the signaling theory, where corporate performance may have the incentive to signal that they are batter companies by providing more voluntary disclosure within their annual reports. The company having higher corporate performance would be due to several aspects including voluntary disclosure, resulting in high voluntary disclosure. Gordon et al. (2010) also state that voluntary disclosures in the annual report send signals to the marketplace, and these signals are expected to increase a firm's net present value and, in turn, its stock market value. Lev and Penman (1990) argue that investors perceived nondisclosure of information as bad news, therefore good-news firms have the motivations to be out from other bad firms. This means that when there is increase in corporate performance, the voluntary disclosure of these firms will increase.

Foster (1986) suggests that corporate performance have incentives to distinguish themselves from less corporate performance in order to raise capital on the best available terms by providing voluntary disclosure. In addition higher corporate performance motivates management to provide greater information because it increases investors' confidence, which in turn, increases management compensation and to support their position. Based on the above discussion, it can be hypothesized that the directions causality between corporate performance and voluntary disclosure within the annual reports. The following hypothesis was formulated as:

H₁: there are different directions of causality (bidirectional, unidirectional, and neutral) between voluntary disclosure and corporate performance among listed Jordanian companies.

2.0 Methodology

2.1 The Disclosure Index

A main task in this type of research is to develop the voluntary disclosure index. The disclosure index is a disclosure checklist which contains a number of different disclosure items (Arvidsson, 2003). The disclosure index is used to measure the extent of voluntary disclosure, mandatory disclosure or both. The current study focuses on the extent of voluntary disclosure in the annual reports of Jordanian listed companies. As may be seen from the literature on disclosure, there is evidence that there is no agreed theoretical framework or guidelines on the number and the selection of items to be included in a disclosure index (Wallace, Naser and Mora, 1994; Bukh, Nielsen, Gormsen and Mouritsen, 2005). Thus, to form the basis for developing the voluntary disclosure index of the study, the following steps have been taken:

- To construct the index, the author created a voluntary disclosure checklist reflecting information over and above what is required by Company Law No. 76 of 2002, IFRSs and Amman Stock Exchange listing requirements.
- 2. Based on the selection on previous studies (e.g. Cooke, 1989; Meek et al, 1995; Ghazali and Weetman, 2006; Akhtaruddin & Haron, 2010; Al-Shammari & Al-Sultan, 2010; Eng and Mak, 2003; Adelopo, 2011; Elsayed and Hoque, 2010; Lopes and Alencar, 2010) and applicability to the Jordanian environment. This is logical as intellectuals agree that researchers have to build on the knowledge of prior

researchers. At the end of this step, a primary list of 64 voluntary disclosure items was developed.

- 3. To validate the checklist, first screened, the items in our disclosure index are checked against the mandatory annual report disclosure requirements in Amman Stock Exchange to make sure that the disclosure index reflects only voluntary disclosure items. Second, two experienced Jordanian accountants from Amman Stock Exchange refined the checklist to ensure its validity. Therefore, the review and the discussions suggested some modifications. So the total number of the voluntary disclosure items was decrease from 64 to 56 items.
- 4. A list of 56 voluntary disclosure items was finalized. The disclosure index is divided into three main groups of voluntary disclosure. The first group the strategic information items. The second group the non-financial information items. The third group the financial information items.

The current study used the unweighted approach for scoring the disclosure index as it is considered more appropriate. The preference for using the unweighted approach is due to several reasons, stated as follows. First, to avoid the high subjectivity involved in assigning the weights of importance of items by different user groups. This is the view taken by Raffournier (1995) and Bukh et al., (2005). Second, the assumption of treating disclosure items equally will result in a lower bias than an inaccurate weighting used by the weighted approach (Raffournier, 1995). Finally, the empirical findings of the studies of Robbins and Austin (1986) and Chow and Wong-Boren (1987), found that the results produced are similar, whether the weighted or unweighted approach is used. Mathematically a voluntary disclosure index is a ratio or percentage of the actual scores achieved by a company divided by the maximum items which the company is expected to disclose (i.e. $VD \le 56$ items). In other words, each item scored 1 if disclosed and 0 otherwise, the scores for each item were added to derive the final score for each company and the voluntary disclosure index was calculated as the ratio of total items disclosed divided by the maximum possible score. In addition, corporate performance (CP) is measured by the return on assets (i.e. the ratio of net income to total assets (ROA)). This measurement of corporate performance has been used by prior studies (e.g. Uyar and Kiliç, 2012).

3.0 Results and Discussions

The current study employs the Granger (1969) test to evaluate the causality directions (bidirectional, unidirectional, and neutral) between voluntary disclosure and corporate performance. However, this test is conducted in levels (without the first differencing).

Table 3.1 shows the Granger causality results for services sector corporations. Firstly, regarding the health care services, there is a unidirectional causality from VD to CP in ABMS and CICO corporations. Also, it shows a no directional causality between VD and CP in ICMI Corporation. Secondly, the result in the educational services shows that no directional causality between VD and CP in ITSC, ZEIC and AIEI corporation. Thirdly, the Hotels and Tourism services show that there is a unidirectional causality from VD to CP in MALL, MDTR and ZARA Corporation. On the other hand, there is a unidirectional causality from CP to VD in JPTD Corporation. Also, it shows no directional causality between VD and CP in JOHT, AIHO and TAJM Corporation. Fourthly, the result of transportation services shows that there is a unidirectional causality from VD to CP in SHIP and SITT corporations. Also, it shows no directional causality between VD and CP in JETT, ALFA and TRTR corporations. Moreover, in the Media services, there is a unidirectional causality from VD to CP in JOPP corporations. Furthermore, regarding to the Utilities and Energy services, the result shows that there is a unidirectional causality from VD to CP in NAPT Corporation. Also, it shows a no directional causality between VD and CP in IREL and JOPT corporations. Finally, the result shows that there is no directional causality between VD and CP in SPTI, JDFS, JITC and ABLA corporations in commercial services.

Symbol	Causality Directions	F-Statistic	Prob.	Decision			
	HealthCare						
ABMS	$VD \rightarrow CP$	5.10680	0.0646	Uni- directional.			
CICO	$VD \rightarrow CP$	22.5730	0.0032	Uni- directional.			
ICMI	VD—CP	0.16509	0.6986	No directional			
		0.30133	0.6029	causality.			
Educational							
ITSC	VD—CP	0.73368	0.4400	No directional			
		1.42723	0.2982	causality.			
ZEIC	VD—CP	0.33505	0.5838	No directional			
		2.48468	0.1660	causality.			

 Table 3.1: Granger Causality Tests for Services Sector Corporations

AIEI	VD—CP	1.04028	0.3471	No directional		
			0.1258	causality.		
Hotels and Tourism						
MALL	$VD \rightarrow CP$	5.30643	0.0608	Uni- directional.		
JPTD	$CP \rightarrow VD$	9.24171	0.0228	Uni- directional.		
JOHT	VD—CP	2.11956	0.1957	No directional		
		1.55566	0.2588	causality.		
AIHO	VD—CP	2.07392	0.1999	No directional		
		1.43886	0.2755	causality.		
TAJM	VD—CP	0.05855	0.8169	No directional		
		0.24006	0.6416	causality.		
MDTR	$VD \rightarrow CP$	5.30643	0.0608	Uni- directional.		
ZARA	$VD \rightarrow CP$	5.49074	0.0576	Uni- directional.		
	7	ransportation	1	1		
JETT	VD—CP	0.11458	0.7465	No directional		
		2.23945	0.1852	causality.		
ALFA	VD—CP	0.55713	0.4836	No directional		
		1.98584	0.2084	causality.		
SHIP	$VD \rightarrow CP$	4.75020	0.0721	Uni- directional.		
SITT	$VD \rightarrow CP$	13.0586	0.0112	Uni- directional.		
TRTR	VD—CP	0.12910	0.7317	No directional		
		0.23372	0.6459	causality.		
		Media				
JOPP	$VD \rightarrow CP$	3.79791	0.0992	Uni- directional		
	Util	lities and Ener	gv			
NAPT	$VD \rightarrow CP$	5.65596	0.0549	Uni- directional		
IREL	VD—CP	3.02951	0.1324	No directional		
	,2 01	0.04485	0.8393	causality.		
JOPT	VD—CP	0.64469	0.4670	No directional		
	12 01	0.44685	0.5404	causality.		
Commercial						
SPTI	VD CP	0.63372	0.4563	No directional		
5111	VD—Cr	0.03462	0.4505	causality		
IDFS	VD, CP	1 76570	0.0303	No directional		
5010	vD—Cr	1 17000	0.2322	causality		
IITC	VD, CP	0.64315	0.4532	No directional		
5110	vD—Cr	0.04313	0.451	causality		
ΔΒΙΔ	VD, CP	1.06295	0 3423	No directional		
		0.16767	0.6964	causality		

Notes: (1) \rightarrow represents the unidirectional causality. (2) – shows no directional causality. (3) \leftrightarrow represents the bidirectional causality.

Source: output of Eviews 7.1 econometric software.

Table 3.2 shows the Granger causality results for industries sector corporations. Firstly, regarding to the Medical Industries, there is a no directional causality between VD and CP in

MPHA, DADI and APHC Corporation. Secondly, the result of the Chemical Industries shows that there is no directional causality between VD and CP in INOH, ICAG, INMJ, JOIR and NATC corporation. Also, it shows that there is a unidirectional causality from VD to CP in JOIC Corporation. Thirdly, under the Cardboard Industries, the result shows that there is a unidirectional causality from VD to CP in JOPC Corporation. Also, it shows a no directional causality between VD and CP in PERL and APCT Corporation. Fourthly, Table 6.8 shows that there is a unidirectional causality from VD to CP in UADI corporations in Packaging Also, it shows a no directional causality between VD and CP in EKPC industries. corporations. Moreover, the result of the Food and Beverages shows that there is a unidirectional causality from VD to CP in NDRA and JVOL corporations. Also, it shows a no directional causality between VD and CP in NATP, AMAN and JODA corporations. In addition, the Tobacco industry's result shows that there is a unidirectional causality from VD to CP in ELCO Corporation. Also, it shows a no directional causality between VD and CP in UTOB corporations. Furthermore, the result of the Mining and Extraction Industries shows that there is a unidirectional causality from VD to CP in JOST, NATA, INTI, NAST and JOCM corporations. Also, it shows a no directional causality between VD and CP in SLCA, AALU, JOPH and APOT corporations. On the other hand, there is bidirectional causality from CP to VD in JOWL Corporation. As well, the result of the Engineering and Constructing shows that there is a unidirectional causality from VD to CP in AJFM Corporation. Also, it shows a no directional causality between VD and CP in RMCC, IENG, JOPI and WOOD corporations. In addition, the Engineering and Constructing result shows that there is a unidirectional causality from VD to CP in AJFM Corporation. Also, it shows a no directional causality between VD and CP in RMCC, IENG, JOPI and WOOD corporations, Moreover, the result of the Electrical Industries shows that there is a unidirectional causality from VD to CP in JNCC, MECE and WIRE Corporation. Also, it shows a no directional causality between VD and CP in AEIN corporations. In addition, the result of the Leathers and Clothing shows that there is a no directional causality between VD and CP in ELZA, CELG, JOWM and WOOL corporations. Finally, the result of the Glass and Ceramic shows that there is a no directional causality between VD and CP in ICER corporations. Also, it shows that there is a unidirectional causality from VD to CP in JOCF Corporation.

Symbol	Causality	F-	Prob.	Decision		
Directions Statistic						
	Pharmaceutical and Medical Industries					
MPHA	VD—CP	0.10214	0.7601	No directional causality.		
		0.17293	0.6920			
DADI	VD—CP	1.25255	0.3059	No directional causality.		
		2.55721	0.1609			
APHC	VD—CP	1.54891	0.2597	No directional causality.		
		3.22531	0.1226			
		Chemical In	dustries	1		
INOH	VD—CP	1.04861	0.3453	No directional causality.		
		0.02751	0.8737			
ICAG	VD—CP	0.81288	0.4020	No directional causality.		
		1.90213	0.2170			
JOIC	$VD \rightarrow CP$	4.06026	0.0905	Uni-directional		
INMJ	VD—CP	0.57197	0.4781	No directional causality.		
		0.33804	0.5821			
NATC	VD—CP	1.77254	0.2314	No directional causality.		
		0.00068	0.9800			
JOIR	VD—CP	0.42346	0.5393	No directional causality.		
0.17429 0.6909						
	Paper and Cardboard Industries					
PERL	VD—CP	0.26395	0.6258	No directional causality.		
		0.53246	0.4931			
APCT	VD—CP	0.23010	0.6484	No directional causality.		
		0.14446	0.7170			
JOPC	$VD \rightarrow CP$	7.42859	0.0344	Uni-directional		
Printing and Packaging						
EKPC	VD—CP	0.14204	0.7192	No directional causality.		
		0.15742	0.7053			
UADI	$VD \rightarrow CP$	10.2150	0.0187	Uni-directional		
Food and Beverages						
NATP	VD—CP	0.1879	2.20751	No directional causality.		
		0.2848	1.37884			
NDRA	$VD \rightarrow CP$	6.61571	0.0422	Uni-directional		
AMAN	VD—CP	2.47771	0.1665	No directional causality.		
		0.79743	0.4063			
JVOL	$VD \rightarrow CP$	5.08287	0.0650	Uni-directional		
JODA	VD-CP	1.32362	0.2937	No directional causality.		
		1.12991	0.3287	······································		
	Т	bacco and (Cigarettes	1		
UTOB	VD-CP	2.71052	0.1508	No directional causality.		
	01	1.09237	0.3362	······································		
ELCO	$VD \rightarrow CP$	4.37714	0.0814	Uni-directional		

 Table 3.2: Granger Causality Tests for industries sector corporations

Mining and Extraction Industries						
JOST	$VD \rightarrow CP$	5.42366	0.0587	Uni-directional		
NATA	$VD \rightarrow CP$	4.55384	0.0768	Uni-directional		
INTI	$VD \rightarrow CP$	7.95837	0.0303	Uni-directional		
SLCA	VD—CP	0.01096	0.9200	No directional causality.		
		0.59750	0.4689			
AALU	VD—CP	0.07542	0.7972	No directional causality.		
		0.06791	0.8073			
NAST	$VD \rightarrow CP$	12.2186	0.0129	Uni-directional		
JOPH	VD—CP	0.53257	0.4930	No directional causality.		
		0.00536	0.9440			
JOCM	$VD \rightarrow CP$	7.44910	0.0342	Uni-directional		
APOT	VD—CP	0.76529	0.4153	No directional causality.		
		0.13121	0.7296			
JOWL	$VD \leftrightarrow CP$	4.24540	0.0850	Bi-directional		
		6.51980	0.0433			
	Engi	neering and	Construction	1		
RMCC	VD—CP	0.99724	0.3638	No directional causality.		
		0.01039	0.9228			
IENG	VD—CP	1.89303	0.1948	No directional causality.		
JOPI	VD—CP	0.02522	0.8800	No directional causality.		
		0.00226	0.9639			
AJFM	$VD \rightarrow CP$	14.2896	0.0092	Uni-directional		
WOOD	VD—CP	3.48406	0.1112	No directional causality.		
		0.53058	0.4938			
Electrical Industries						
JNCC	$VD \rightarrow CP$	21.8228	0.0034	Uni-directional		
		1.04610	0.2450			
AEIN	VD—CP	1.04618	0.3458	No directional causality.		
		1.92303	0.2148			
MECE	$VD \rightarrow CP$	8 0/188	0.0243	Uni directional		
MECE	$VD \rightarrow Cr$	0.94100	0.0245	Uni-unectional		
WIRE	$VD \rightarrow CP$	10.1439	0.0190	Uni-directional		
Textiles Leathers and Clothing's						
ELZA	VD—CP	0.31949	0.5924	No directional causality.		
		2.6608	0.9999			
CELG	VD—CP	3.26814	0.1206	No directional causality.		
	, 2 01	0.20654	0.6655	5		
JOWM	VD—CP	2.3906	0.1730	No directional causality.		
	, 2 01	0.83813	0.3952	5		
WOOL	VD—CP	0.31949	0.5924	No directional causality.		
		2.60008	0.9999			
Glass and Ceramic Industries						
ICER	VD—CP	0.05380	0.8243	No directional causality.		
		3.44706	0.1127			
1	1	1	1			

JOCF	$VD \rightarrow CP$	18.4710	0.0051	Uni-directional
 (1) (1)	11 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +	1 1 4	. 1 1. (2)	

Notes: (1) \rightarrow represents the unidirectional causality. (2) – shows no directional causality. (3) \leftrightarrow represents the bidirectional causality. Source: output of Eviews 7.1 econometric software.

Table 3.3 shows the Granger causality results for services and industries corporations. The result shows that, there is a unidirectional causality from VD to CP in Jordanian listed companies (e.g. services and industries sectors). This means that an increase in the voluntary disclosure within the Jordanian listed companies may lead to a case for higher corporate performance for these companies (Mitton, 2002 and Chang, Cho and Shin, 2007).

Table 3.3: Granger Causality Tests for services and industries corporations

-	Causality Directions	F- Statistic	Prob.	Decision	
-	$VD \rightarrow CP$	5.11540	0.0644	Uni-directional	
$totes: \rightarrow$ represents the unidirectional causality.					

N

Source: output of Eviews 7.1 econometric software.

Table 4.4 reports the estimated results of Granger causality tests for services and industries sector corporations. The results indicate that there are 27 companies having unidirectional causality, 44 companies having no directional causality and one company having bidirectional causality.

Table 3.4: Summary of Granger Causality Tests for services and industries sector

corporations					
Causality Directions	Services Sector Corporations	for industries sector corporations	All corporations		
Uni-directional	10	17	27		
Bi-directional	0	1	1		
No directional	16	28	44		
Total of corporation	26	46	72		

Table 3.4 indicates the relationships between the variables where voluntary disclosure cause corporate performance (VD \rightarrow CP). This means that an increase in the voluntary disclosure may lead to a case for higher corporate performance. In addition, Mitton (2002) further argued that the quality of voluntary disclosure is also highly correlated with firm performance. Hence, high degree of transparency and quality of disclosure should enable sound governance and improve firm performance. Otherwise, low voluntary disclosure increases the market's difficulty in predicting firm performance (Chang, Cho and Shin, 2007). Also the result shows that bi-directional causality between the voluntary disclosure and corporate performance (VD \leftrightarrow CP). This mean increase in the voluntary disclosure may lead to a case for higher corporate performance (Mitton, 2002 and Chang, Cho and Shin, 2007) and in same time increase in the corporate performance may lead to a case for higher voluntary disclosure (Haniffa and Cook, 2002; Camfferman and Cooke, 2002; Chau and Gray; 2002; Kusumawati, 2006; Adelopo, 2011). In addition, the result shows no directional causality between voluntary disclosure and corporate performance (VD — CP).

Several possible reasons can explain the non-directional causality between the voluntary disclosure and corporate performance (VD - CP). First, Jordan is suffering like most countries of the world from the recent financial crisis, which is effecting in the economic and corporate performance. According to the signal theory, the management of the companies with high corporate performance try to distinguish themselves from other by disclosing inside information to signal the fact of their company's performance. Hence, the management of the companies with low corporate performance will not signal (e.g. disclose more information) because the low of corporate performance (Roos, Dragonetti and Edvinsson, 1997). In addition, Jordan with its limited resource, its import the oil and the Gas from the neighboring markets, with the rising cost of energy prices for these companies, which lead to the high cost and pricing (Addustour, 2011). Thus, the management of the Jordanian companies will not disclose more information because there will be some cost for the voluntary disclosure in any company (e.g. processing and collecting information cost (Healy and Palepu, 1993; and Eccles and Mavrinac, 1995). Second, it is also true that Jordanian listed companies are inclined not to disclose information that will damage their competitive position (Newman and Sansing, 1993). Hence, the main problem faced representatives of the Jordanian companies related to unfair competition (Addustour, 2011). Finally, in 2004, JSC imposed 365 enforcement actions mostly for lack of proper disclosure (Rosc, 2005).

4.0 Conclusion and Recommendations

In fact, one of the most important issues that the policymakers, today, have to deal with discloses more information and the need for enhancement and development of voluntary disclosure to improve the corporate performance. Therefore, there is feedback Granger Causality between voluntary disclosure and corporate performance within Jordanian listed companies.

References

- Adelopo, I. (2011). Voluntary disclosure practices amongst listed companies in Nigeria. *Advances in Accounting*, 27(2), 338-345.
- Ahmed, K., & Courtis, J.K. (1999). Associations between corporate characteristics and disclosure levels in annual reports: a meta-analysis. *The British Accounting Review*, 31(1), 35-61.
- Akhtaruddin, M. (2005). Corporate mandatory disclosure practices in Bangladesh. *The International Journal of Accounting*, 40(4), 399-422.
- Akhtaruddin, M., & Haron, H. (2010). Board ownership, audit committees' effectiveness, and corporate voluntary disclosures. *Asian Review of Accounting*, 18(3), 245-259.
- Al-Shammari, B., & Al-Sultan, W. (2010). Corporate governance and voluntary disclosure in Kuwait. *International Journal of Disclosure and Governance*, 7(3), 262-280.
- Arvidsson, S. (2003). The extent of disclosure on intangibles in annual reports. In Paper presented at the 4th annual SNEE congress in Mölle, Vol. 20, 23.
- Barako, D. G., Hancock, P., & Izan, H. Y. (2006). Relationship between corporate governance attributes and voluntary disclosures in annual reports: the Kenyan experience. *Financial Reporting, Regulation and Governance*, 5(1), 1-26.
- Botosan, C.A. (1997). Disclosure level and the cost of equity capital. Accounting review, 323-349.
- Bukh, P. N., Nielsen, C., Gormsen, P., & Mouritsen, J. (2005). Disclosure of information on intellectual capital in Danish IPO prospectuses. Accounting, Auditing & Accountability Journal, 18(6), 713-732.
- Camfferman, K., & Cooke, T. E. (2002). An analysis of disclosure in the annual reports of UK and Dutch companies. *Journal of International Accounting Research*, 1(1), 3-30.
- Chang, J., Cho, Y. J., & Shin, H. H. (2007). The change in corporate transparency of Korean firms after the Asian financial crisis: An analysis using analysts' forecast data. Corporate Governance: An International Review, 15(6), 1144-1167.
- Chang, J., Cho, Y. J., & Shin, H. H. (2007). The change in corporate transparency of Korean firms after the Asian financial crisis: An analysis using analysts' forecast data. Corporate Governance: An International Review, 15(6), 1144-1167.
- Chau, G. K., & Gray, S. J. (2002). Ownership structure and corporate voluntary disclosure in Hong Kong and Singapore. *The International Journal of Accounting*, 37(2), 247-265.
- Cheng, E., & Courtenay, S. M. (2006). Board composition, regulatory regime and voluntary disclosure. *The International Journal of Accounting*, 41(3), 262-289.
- Chow, C. W., & Wong-Boren, A. (1987). Voluntary financial disclosure by Mexican corporations. *Accounting Review*, 533-541.
- Cooke, T.E. (1989). Disclosure in the corporate annual reports of Swedish companies. Accounting and business research, 19(74), 113-124.

- Eccles, R. G., & Mavrinac, S. C. (1995). Improving the corporate disclosure process. Sloan Management Review, 36(4), 11-25.
- Elsayed, M. O., & Hoque, Z. (2010). Perceived international environmental factors and corporate voluntary disclosure practices: an empirical study. *The British Accounting Review*, 42(1), 17-35.
- Eng, L. L., & Mak, Y. T. (2003). Corporate governance and voluntary disclosure. *Journal of accounting and public policy*, 22(4), 325-345.
- Foster, G. (1986). Financial statement analysis, Second Edition Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
- Ghazali, N. A., & Weetman, P. (2006). Perpetuating traditional influences: voluntary disclosure in Malaysia following the economic crisis. *Journal of International Accounting, Auditing and Taxation*, 15(2), 226-248.
- Gordon, L. A., Loeb, M. P., & Sohail, T. (2010). Market Value of Voluntary Disclosures Concerning Information Security. *MIS quarterly*, 34(3).
- Haniffa, R. M., & Cooke, T. E. (2002). Culture, corporate governance and disclosure in Malaysian corporations. *Abacus*, 38(3), 317-349.
- Healy, P. M., & Palepu, K. G. (1993). The effect of firms' financial disclosure strategies on stock prices. *Accounting Horizons*, 7, 1-1.
- Kusumawati, D.N. (2006). Profitability and corporate governance disclosure: an Indonesian study. *Simponsium Nasional Akuntansi*, 9.
- Lang, M., & Lundholm, R. (1993). Cross-sectional determinants of analyst ratings of corporate disclosures. *Journal of accounting research*, 246-271.
- Lev, B., & Penman, S. H. (1990). Voluntary forecast disclosure, nondisclosure, and stock prices. *Journal of Accounting* Research, 49-76.
- Lopes, A. B., & de Alencar, R. C. (2010). Disclosure and cost of equity capital in emerging markets: The Brazilian case. *The International Journal of Accounting*, 45(4), 443-464.
- Meek, G. K., Roberts, C. B., & Gray, S. J. (1995). Factors influencing voluntary annual report disclosures by US, UK and continental European multinational corporations. *Journal of international business studies*, 555-572.
- Mitton, T. (2002). A cross-firm analysis of the impact of corporate governance on the East Asian financial crisis. *Journal of financial economics*, 64(2), 215-241.
- Newman, P., & Sansing, R. (1993). Disclosure policies with multiple users. *Journal of Accounting Research*, 92-112.
- Raffournier, B. (1995). The determinants of voluntary financial disclosure by Swiss listed companies. *European Accounting Review*, 4(2), 261-280
- Robbins, W. A., & Austin, K. R. (1986). Disclosure quality in governmental financial reports: An assessment of the appropriateness of a compound measure. *Journal of Accounting Research*, 24(2), 412-421.
- Roos, G., Dragonetti, N. C., & Edvinsson, L. (1997). Intellectual capital. J. Roos (Ed.). Macmillan.
- ROSC (2005). Report on the observance of standards and codes, Corporate Governance Country Assessment, electronic version, published Feb 3, 2005, by the jointWorld Bank–IMF program of reports on the observance of standards and codes, Jordan, bjor_rocs_cg.pdfN.
- Uyar, A., & Kiliç, M. (2012). Value relevance of voluntary disclosure: evidence from Turkish firms. *Journal of Intellectual Capital*, 13(3), 363-376.

Wallace, R. S., & Naser, K. (1996). Firm-specific determinants of the comprehensiveness of mandatory disclosure in the corporate annual reports of firms listed on the stock exchange of Hong Kong. *Journal of Accounting and Public policy*, 14(4), 311-368.